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Abstract

Many school districts operate “school choice” or “open enrollment” programs that
give parents a choice of school. The popular schools in these districts are often over-
subscribed, such that districts must decide which applicants receive priority at these
schools. Typically, U.S. school districts give priority to students that live close to these
schools or allocate by random lottery. However, another option used by a growing
number of districts are priorities for disadvantaged students, which are intended to
promote equity and reduce school segregation. This paper shows that, despite their
e↵ects on transportation costs, equity priorities can increase e�ciency in the sense of
raising aggregate welfare. They do this by facilitating better matches of students to
schools. (JEL H73, H75, I21, I28)
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1 Introduction

Many school districts operate “school choice” or “open enrollment” programs that give par-

ents a choice of school. In principle, choice-based student assignment o↵ers three advantages

over a traditional policy of neighborhood assignment.1 First, it can improve overall edu-

cational quality by stimulating competition between schools (i.e., increase productive e�-

ciency). Second, it can help parents to find schools that are a good match for their child (i.e.,

increase allocative e�ciency). Third, it can advance equity and reduce school segregation by

expanding access to good schools. In practice, school capacity is often constrained, such that

not all students can be assigned to their preferred school. While capacity constraints limit the

extent to which choice can improve productive e�ciency (Hoxby, 2006; Neal, 2018), choice

could still advance equity and improve allocative e�ciency. Whether it does will depend

crucially on how districts prioritize applicants to oversubscribed schools.

As we document below, districts prioritize applicants in various ways. Some use “neigh-

borhood priorities” that favor students living close to the school. Others prioritize by random

lottery. A third option used by a growing number of districts are priorities for disadvantaged

students. Some of these are unconditional priorities (i.e., independent of the number of stu-

dents who benefit from them), others are part of quota or reserve systems (often known as

“controlled school choice”). Priorities for disadvantaged students are intended to promote

equity and reduce school segregation and hence we refer to them as “equity priorities”.

Since oversubscribed schools are often in a✏uent neighborhoods, equity priorities will

likely increase transport costs and, one might assume, reduce overall welfare. This suggests

that policy-makers that use equity priorities do so at the expense of welfare (i.e., an equity-

e�ciency trade-o↵). However, if parents’ preferences are heterogeneous, such that the utility

of attending a school equals the average utility across all parents plus some idiosyncratic

match component, then an e�ciency analysis must also account for whether good matches

are realized. This paper points out that despite their e↵ects on transport costs, equity

priorities can increase welfare by facilitating better matches of students to schools. In other

words, we present an e�ciency case for equity priorities.

Our argument presumes a world in which i) parents incur additional transport costs from

using a public school not in their neighborhood, ii) parents have idiosyncratic preferences over

public schools in their area, iii) parents care about the socio-economic background of their

child’s peers, and iv) public schools have capacity constraints.2 The starting point for the

1By “neighborhood assignment” we mean a system in which students are assigned to the school serving the
attendance zone in which they live.

2There is ample evidence for transport costs, idiosyncratic preferences (Hastings et al., 2009; Abdulkadiroğlu
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argument is that when parents have preferences over their child’s peers, their school choices

will be distorted. That is because they will be based partly on peer quality, which is zero-sum

from the district perspective. Equity priorities can decrease peer di↵erences across schools

and thereby incentivize parents to put more weight on fundamentals (i.e., match quality)

when choosing schools. This can increase aggregate welfare.

We use the simplest possible model to make the point. A community is divided into

two equally-sized neighborhoods, each containing one school. Each school can accommodate

one half of the student population. One neighborhood has higher socio-economic status

households than the other. The schools di↵er in an exogenous way that makes one school a

better match for some students than others. Parents know and care about these matching

benefits but also have preferences over the socio-economic status of their child’s classmates.3

Households face a transport cost if their child attends the school not in their neighborhood.

A school district assigns students to schools in the community. The district cannot observe

students’ matching benefits from the two schools and hence cannot simply assign students

to their best match. Instead, it must respect incentive compatibility constraints that require

that households find it in their interests to take the assignments intended for them.

We show that the optimal assignment can be implemented by one of three methods:

neighborhood assignment (i.e., students are assigned to their neighborhood schools), school

choice with neighborhood priorities, or school choice with equity priorities. With equity

priorities, priority in assignments to the school in the more a✏uent neighborhood is given

to households from the less a✏uent neighborhood. With neighborhood priorities, priority is

given to households from the more a✏uent neighborhood. In both cases, available seats for

non-priority households are randomly assigned to interested households.

Neighborhood assignment implements the optimal assignment when match benefits are

small relative to transport costs and neighborhood inequality (i.e., the di↵erence between

the socio-economic status of the two neighborhoods). School choice is required when match

benefits are large relative to transport costs and neighborhood inequality. Choice uses equity

priorities when neighborhood inequality is high relative to transport costs. The intuition is

that absent equity priorities, highly unequal neighborhoods yield highly segregated schools.

As noted above, in the presence of peer preferences, segregated schools distort parents’ school

choices (i.e., inhibit their search for a good match). Equity priorities help to reduce school

segregation and thereby facilitate better matches of students to schools.

Our focus on peer preferences connects our paper to other models of student assignment

et al., 2017) and peer preferences (Rothstein, 2006; Abdulkadiroğlu et al., 2020).
3We assume that these preferences do not vary by household type, such that preference heterogeneity is
captured entirely by match benefits. We discuss this assumption in Section 4.
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that assume peer e↵ects (Arnott and Rowse, 1987; De Bartolome, 1990), as well as other

models of school choice that assume peer preferences (Barseghyan et al., 2019; Allende,

2019; Avery and Pathak, 2021). It separates our paper from the large “school matching”

literature that is concerned with school assignment but abstracts from peer preferences (see

Pathak (2017) and Abdulkadiroglu and Andersson (2022) for surveys).4 Our two-school

model reinforces this separation, since it yields optimal assignments that can be implemented

with simple school choice mechanisms, and hence we sidestep issues that would arise in models

with three or more schools and that would require consideration of the types of mechanisms

analyzed in the school matching literature (e.g., Deferred Acceptance, Boston Mechanism).

As noted above, some equity priorities fall under the “controlled school choice” umbrella

(e.g., quota and reserve systems). Inspired by these types of systems, a strand of the school

matching literature analyzes whether mechanisms that target diversity objectives can satisfy

other desirable properties, notably “stability”.5 Our paper di↵ers from this work in three key

ways. First, since our model yields optimal assignments that can be implemented with simple

school choice mechanisms that feature a simple equity priority (i.e., priority to residents of the

disadvantaged neighborhood), we abstract from more complex priority structures. Second,

while segregation turns out to be a central mechanism linking school priorities to welfare, we

assume the social planner cares only about welfare. Third, as emphasized above, we allow

for peer preferences. Indeed, segregation matters for welfare because, in the presence of peer

preferences, it distort parents’ school choices. To summarize, while our model features a

simple equity priority, we suspect that our e�ciency case for equity priorities applies to a

broader class of priorities that includes controlled school choice.6

The rest of the paper is organized as follows. Section 2 provides empirical background.

Section 3 presents our model, states its solutions, explains how it is solved, and discusses the

underlying economic intuition. Section 4 concludes.

4As Abdulkadiroglu and Andersson (2022) note, ”In general, families care about schools as well as peers of
their children at schools. However, it is di�cult, and most of the time impossible, to extend the theory of
matching by generalizing student preferences over sets of students enrolled at schools.” (p.6) See Cox et al.
(2021) and Leshno (2021) for recent attempts to incorporate peer preferences into matching mechanisms.

5Stability (also known as “absence of justified envy”) is violated when a student is assigned to a school and
another student is not assigned despite having priority over the assigned student and despite preferring the
school to their assigned school. Abdulkadiroglu and Andersson (2022) review this literature (section 8.1).

6Shi (2022) considers optimal (i.e., welfare-maximizing) priority design in a setup with flexible priorities
(drawn from a probability distribution) but without peer preferences.
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2 Choice, capacity constraints and school priorities

To motivate our analysis, this section documents the prevalence of choice, the existence of

capacity constraints and various school priorities used by choice districts in the U.S.

2.1 School choice

A survey of American parents conducted in 2016 revealed that in more than 30% of cases,

their children did not attend their “regularly assigned” school.7 This suggests that many

parents exercise some form of school choice, but does not reveal the precise form that this

choice takes. Using data from Whitehurst (2017), which documents the student assignment

methods used by the 112 largest school districts in the U.S., we classify these methods as

either “neighborhood assignment”, “opt-out choice” or “centralized choice”.8 Under “neigh-

borhood assignment” (49 districts and 37% of enrollment) students attend their attendance-

zone school. Under “opt-out choice” (51 districts and 47% of enrollment), students are

defaulted to their attendance-zone school but can express a preference for - and attend -

another school. Under “centralized choice” (12 districts and 16% enrollment) there is no

default school. Instead, parents rank schools and students are assigned via an algorithm that

accounts for their rankings and their priorities at di↵erent schools.

2.2 Capacity constraints

Districts that use choice-based systems do not guarantee that students will be assigned to

their preferred school. Capacity constraints are di�cult to quantify, but centralized choice

systems yield one measure: the fraction of parents not assigned to their first-choice school.

For one half of the centralized choice districts listed in Table 1, this exceeds 50%.

2.3 School priorities

In the presence of capacity constraints, choice districts must decide which students receive

priority at oversubscribed schools. By definition, opt-out choice districts use neighborhood

7See Figure 1 of Wang et al. (2019).
8Our classification is based on criteria used by Whitehurst (2017). Centralized-choice districts are those coded
“Yes” to Question 5A: “Students assigned to schools through an application process in which parents express
their preferences (rather than through geographical attendance zones)”. Opt-out choice districts are those
coded “Yes” to Question 5B: “Students receive default school assignment based on geographical attendance
zone but parents can easily express their preferences for other schools”. Neighborhood-assignment districts
are those coded “Yes” to Question 5G: “Assignment to schools out of student’s geographical attendance zone
is impossible or di�cult”.
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priorities (i.e., prioritize attendance-zone students). In contrast, di↵erent centralized choice

districts use di↵erent methods. To provide a flavor of this variation, note that the 10 districts

listed in Table 1 use one of three main methods.9 First, some districts use various types

of neighborhood priorities. To the extent that popular schools are found in more a✏uent

neighborhoods, these priorities imply that more-advantaged families will have priority at

popular schools. Second, some districts use random lotteries.10 Third, some districts use

equity priorities that favor less-advantaged students. Di↵erent districts do this in di↵erent

ways, but the underlying goal is the same: to enable less-advantaged students to attend

oversubscribed schools.11

Table 1 Capacity Constraints and School Priorities

Not assigned
to 1st-choice

Main method
of rationing

Baltimore (DC)
Middle Schools 56% Neighborhood
High Schools 50% Lottery
Boston (MA)
Pre-2013 55% Neighborhood
Post-2013 Not available Lottery
Denver (CO) 19% Reduced-Price Lunch
Lee (FL) 15% Neighborhood
Milwaukee (WI) 5% Neighborhood
New York City (NY) 68% Varies (see text)
Newark City (NJ) 47% Neighborhood
Oakland Unified (CA) 34% Neighborhood
Orleans Parish (LA) 55% Neighborhood
San Francisco (CA) 37% Census Tract of Residence

Notes: The table contains information for 10 of the 12 districts classified as “centralized choice” using the
Whitehurst (2017) data (see text for details). The second column reports the fraction of applicants assigned
to a school other than the first-choice school (in year for which data most recently available). The third
column describes the main method of rationing (i.e., the students prioritized for seats that remain after
continuing students and siblings assigned.)

9These districts give first priority to continuing students and students with siblings already enrolled at a
school, hence “main method” is the first method used to allocate remaining seats.

10Nearly all districts use lotteries after other priorities have been applied.
11In Denver and San Francisco, disadvantaged students receive priority over all seats (where applicable). In
New York City, a proportion of seats are reserved for disadvantaged students defined by family income and
other criteria (Margolis et al., 2023; Idoux, 2022).
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3 Model and results

3.1 The model

The model features a single community with a population of households of size 2. The com-

munity is divided into two neighborhoods, A and B, each containing 1/2 of the population.

There are two schools serving the community, one in each neighborhood. Each school has a

capacity of 1. The school in neighborhood J 2 {A,B} is referred to as school J .

Households di↵er in their socio-economic status. The neighborhoods are stratified and A

is the more a✏uent neighborhood. Neighborhood A consists of households of socio-economic

status µ, while neighborhood B is comprised of households of status �µ. The parameter µ

measures the degree of neighborhood inequality.

Each household has a child that must attend one of the two schools. Households care

about peer quality at the school their child attends. This is measured by the average socio-

economic status of the school’s students.

Households also have idiosyncratic preferences for the two schools that reflect the quality

of the perceived match between the school and their child. To keep household preference

types one dimensional, we assume that households only di↵er in their preferences for school

A. Specifically, all households obtain a match benefit 0 from school B and an idiosyncratic

match benefit m from school A. The school A match benefit m is uniformly distributed on

[�M,M ]. The parameter M measures the extent of potential match benefits. Households

incur a “transport cost” c if using the school not in their neighborhood. This cost captures

the additional transaction costs arising from using this school.

Let sJ denote the average socio-economic status of school J ’s students. Then, a household

living in neighborhood A with match benefit m obtains a payo↵ sA + m from using school

A and a payo↵ sB � c from school B. A household living in neighborhood B with match

benefit m obtains a payo↵ sB from using school B and a payo↵ sA +m� c from school A.

3.2 The school assignment problem

A school district is tasked with assigning the community’s children to the two schools. Each

household is characterized by its location J and its match benefit m. An assignment is a

pair of functions (⇡A(m), ⇡B(m)) mapping points in [�M,M ] to points in the interval [0, 1].

The interpretation is that the child of a household in neighborhood J with match benefit

m is assigned to school A with probability ⇡J(m) and school B with probability 1� ⇡J(m).

An assignment is feasible if 1/2 the community’s students are assigned to each school. This
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requires that ˆ M

�M

(⇡A(m) + ⇡B(m))
dm

2M
= 1. (1)

Under the assignment (⇡A(m), ⇡B(m)), the average socio-economic status of the two

schools are

sA = µ

ˆ M

�M

(⇡A(m)� ⇡B(m))
dm

2M
, (2)

and

sB = µ

ˆ M

�M

(⇡B(m)� ⇡A(m))
dm

2M
. (3)

The expected payo↵ of a neighborhood A household with match benefit m is

⇡A(m) (sA +m) + (1� ⇡A(m)) (sB � c) (4)

and the expected payo↵ of a neighborhood B household with match benefit m is

⇡B(m) (sA +m� c) + (1� ⇡B(m)) sB. (5)

The school district’s objective function is the sum of households’ expected payo↵s. This

objective function can be simplified by observing that the peer quality e↵ects are zero sum

and thus wash out. This can be seen from (2) and (3), which imply that sA and sB must sum

to zero. This implies that, if the assignment (⇡A(m), ⇡B(m)) is feasible, the school district’s

objective function is equal to

W =

ˆ M

�M

[m⇡A(m) +m⇡B(m)� c (1� ⇡A(m))� c⇡B(m)]
dm

2M
. (6)

Thus, the school district’s payo↵ depends only on the match benefits and the transport costs.

3.3 The first best

If the school district could observe each household’s match quality m, its problem would be

to choose an assignment (⇡A(m), ⇡B(m)) to maximize the objective function (6) subject to

the feasibility constraint (1). The first best assignment is the assignment that solves this

problem.

The first best assignment has a very simple form: neighborhood A households are assigned

to school A if their match benefits exceed �c, while neighborhood B households are assigned

to school A if their match benefits exceed c. This is established in:
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Proposition 1 The first best assignment is

⇡A(m) =

(
1 if m > �c

0 if m < �c
, (7)

and

⇡B(m) =

(
1 if m > c

0 if m < c
. (8)

3.4 The second best

When the school district cannot observe each household’s match benefit m, it must respect

incentive compatibility constraints that ensure that households take the assignments intended

for their children. For households in neighborhood A, these constraints are as follows: for all

m 2 [�M,M ] and any m0 2 [�M,M ]

⇡A(m) (sA +m) + (1� ⇡A(m)) (sB � c) � ⇡A(m
0) (sA +m) + (1� ⇡A(m

0)) (sB � c) . (9)

Similarly, for households in neighborhood B, the constraints are: for all m 2 [�M,M ] and

any m0 2 [�M,M ]

⇡B(m) (sA +m� c) + (1� ⇡B(m)) sB � ⇡B(m
0) (sA +m� c) + (1� ⇡B(m

0)) sB. (10)

Note that the peer qualities sA and sB appear in the incentive compatibility constraints and

depend on the assignment via the equations (2) and (3).

An assignment (⇡A(m), ⇡B(m)) is incentive compatible if it satisfies the incentive compat-

ibility constraints (9) and (10) when sA and sB satisfy the equations (2) and (3). The second

best problem is then to choose an incentive compatible and feasible assignment that maxi-

mizes the school district’s objective function (6). A second best assignment is an assignment

that solves this problem.

3.4.1 The second best assignment when M  c

When considering the second best assignment, the first question to ask is whether the first

best assignment is incentive compatible. If so, this is also the second best assignment. When

M is less than c, the match benefits are small relative to the transport costs and the first

best assignment just involves assigning students to their neighborhood schools. We refer to

this as neighborhood assignment. This assignment is clearly incentive compatible because all
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students in each neighborhood are treated in a uniform way. Thus we have:

Proposition 2 If M  c, the second best assignment is neighborhood assignment; i.e.,

(⇡A(m), ⇡B(m)) = (1, 0) for all m.

3.4.2 The second best assignment when M > c

When M exceeds c, the match benefits are large relative to the transport costs and the

first best assignment is not incentive compatible if there is neighborhood inequality (i.e., if

µ > 0). To see this, note that under the first best assignment, the peer quality in school

A, sA, is µPr(m � �c) � µPr(m � c) and the peer quality in school B, sB, is µPr(m <

�c) � µPr(m < c). Now consider a household living in neighborhood A of type � (c+ ")

where " is small. If they report their type accurately, their child is assigned to school B and

they get a payo↵ sB � c. If they report their type to be �c, they get a payo↵ sA � (c+ ").

They gain from misreporting if the peer quality di↵erence, defined to be�s ⌘ sA�sB, exceeds

". Subtracting sB from sA, we see that �s is equal to 2µc/M . Thus, for " su�ciently small,

misreporting is optimal. It follows that the second best assignment will not equal the first

best assignment when M exceeds c.

What does the second best assignment look like in this case? The answer is not obvious.

One question is whether neighborhood assignment could be optimal. While this minimizes

transport costs, when M exceeds c, it seems potentially desirable to assign some households

to non-neighborhood schools. However, we would expect school A to be more attractive

than school B (i.e., we would expect the peer quality di↵erence to be positive), such that

not every household that prefers school A can be assigned to school A. This begs a second

question of which students should be assigned. For example, would it be better to assign a

random subset of those that prefer school A or favor students from the poorer neighborhood?

Favoring students from the poorer neighborhood would increase transport costs, but should

help to reduce the peer quality di↵erence between the schools and thereby reduce school A’s

advantage. A third question is whether it could even be optimal to assign students from the

poorer neighborhood to the school in the richer neighborhood when their parents prefer the

local school? Such a strategy might be justified on the grounds of reducing the peer quality

di↵erence.

Our next proposition describes the second best assignment when M exceeds c. The solu-

tion is relatively simple. The peer quality di↵erence does end up being positive, so school A

has an advantage. Only households who prefer school A are assigned to it, but not all who

prefer it are so assigned. In rationing access, priority is either given to interested neighbor-
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hood A households or interested neighborhood B households. Which of these possibilities

arises depends on the three parameters µ, M , and c.

Proposition 3 i) Suppose that M > c and that µ < c/2. Then, if M  c + 2µ, the

second best assignment is neighborhood assignment (i.e., (⇡A(m), ⇡B(m)) = (1, 0) for all m).

If M > c+ 2µ, the second best assignment is

⇡A(m) =

(
1 if m � �c� 2µc

M�2µ

0 if m < �c� 2µc
M�2µ

, (11)

and

⇡B(m) =

8
<

:

M�c� 2µc
M�2µ

M�c+ 2µc
M�2µ

if m � c� 2µc
M�2µ

0 if m < c� 2µc
M�2µ

. (12)

This assignment can be implemented by school choice, with priority at school A given to

neighborhood A households.

ii) Suppose that M > c and that µ > c/2. Then, if M < c +
p

µ2 + 4cµ � µ, the second

best assignment is neighborhood assignment. If M > c +
p

µ2 + 4cµ � µ, the second best

assignment is

⇡A(m) =

8
<

:

M+c� 2µc
M+2µ

M+c+ 2µc
M+2µ

if m � �c� 2µc
M+2µ

0 if m < �c� 2µc
M+2µ

, (13)

and

⇡B(m) =

(
1 if m � c� 2µc

M+2µ

0 if m < c� 2µc
M+2µ

. (14)

This assignment can be implemented by school choice, with priority at school A given to

neighborhood B households.

Part i) of the Proposition distinguishes two sub-cases when µ is less than c/2. If M is

less than c+ 2µ, students are assigned to their neighborhood school. This assignment yields

a peer quality di↵erence equal to 2µ. Given this, and the fact that 2µ �M exceeds �c, all

neighborhood A households prefer school A. Some neighborhood B households also prefer

school A, but they are not so assigned.

If M exceeds 2µ + c, the assignment is described by equations (11) and (12). The

peer quality di↵erence �s in this assignment is 2µc/ (M � 2µ). The assignment is incentive

compatible because the only neighborhood A households assigned to school A are those for

whom m + �s exceeds �c and the only neighborhood B households assigned to school A

are those for whom m + �s exceeds c. However, there is an important di↵erence between
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neighborhood A and B households: all neighborhood A households who prefer school A

are assigned to it, while only some of neighborhood B households who prefer school A are

assigned to it.

The optimal assignment in this second sub-case can be implemented by a school choice

program. The school district simply asks all households to choose their preferred school.

All neighborhood A households choosing school A and all households choosing school B are

assigned to their preferred schools. The seats at school A not wanted by neighborhood A

households are assigned randomly among the neighborhood B households who have chosen

school A; some will have to attend school B. In this program, therefore, priority at the

oversubscribed school is given to those who live in that school’s neighborhood (neighborhood

priorities).

Part ii) of the Proposition distinguishes two sub-cases when µ exceeds c/2. If M is less

than c +
p
µ2 + 4cµ � µ, students are assigned to their neighborhood school. As explained

above, this assignment leads to a peer quality di↵erence of 2µ. Note that when µ exceeds

c/2, c +
p

µ2 + 4cµ � µ must be less than c + 2µ. Accordingly, 2µ �M exceeds �c and all

neighborhood A households prefer school A. Some neighborhood B households prefer school

A, but again they are not so assigned.

If M exceeds c+
p

µ2 + 4cµ�µ, the assignment is described by equations (13) and (14).

The peer quality di↵erence �s in this assignment is equal to 2µc/ (M + 2µ). The assignment

is incentive compatible because the only neighborhood A households assigned to school A

are those for whom m + �s exceeds �c and the only neighborhood B households assigned

to school A are those for whom m + �s exceeds c. However, the priorities are reversed

from the analogous case in part i): now all neighborhood B households who prefer school A

are assigned to it, while only some of neighborhood B households who prefer school A are

assigned to it.

Again, the optimal assignment in the second sub-case can be implemented by a school

choice program. The school district asks all households to choose their preferred school.

All neighborhood B households choosing school A and all households choosing school B are

assigned to their preferred school. The seats at school A not wanted by neighborhood B

households are assigned randomly among the neighborhood A households who have chosen

school A. In this program, therefore, priority at the oversubscribed school is given to those

who live in the less-a✏uent neighborhood (equity priorities).

Figure 1 illustrates the solution for fixed c as a function of the parameters µ and M . The

left hand side of the figure illustrates part i) of the Proposition (when µ is less than c/2).

The solid black line describes the function M = c + 2µ. When M is below this line, the

12



district should use neighborhood assignment. When M is above the line, the district should

allow school choice, but give priority to neighborhood A students in assigning to school A.

The right hand side of the figure illustrates part ii) of the Proposition (when µ exceeds c/2).

The dashed black line describes the function M = c+
p

µ2 + 4cµ�µ. When M is below this

line, the district should again use neighborhood assignment. When M is above the line, the

district should allow school choice, but give priority to neighborhood B students in assigning

to school A.

Figure 1 Illustration of Proposition 3

0 c/2
c

2c

Neighborhood Assignment

Choice (priority A) Choice (priority B)

µ

M

3.4.3 Proving Proposition 3

While our model is spartan and the second-best assignment is simple to understand, estab-

lishing the properties of this assignment is challenging. This sub-section explains the key

steps of the proof; full details can be found in the Online Appendix.

Step 1. The first step is to simplify the incentive compatibility constraints. Starting with

neighborhood A households, if sA +m exceeds sB � c, so that the household prefers school

A, then the household will want to report an m0 that maximizes ⇡A(m0) - the probability

they are assigned to school A. Thus, incentive compatibility requires that ⇡A(m) equal

13



max ⇡A(m0). If sA +m is less than sB � c, so that the household prefers school B, then the

household will want to report an m0 that minimizes ⇡A(m0). Thus, incentive compatibility

requires that ⇡A(m) equal min ⇡A(m0). By a similar logic, if sA + m is less than sB � c,

so that a neighborhood B household prefers school B, incentive compatibility requires that

⇡B(m) equal min ⇡B(m0). If sA + m � c exceeds sB, so that a neighborhood B household

prefers school B, incentive compatibility requires that ⇡B(m) equal min ⇡B(m0).

It follows that incentive compatible assignments can be characterized by four probabilities

(⇡A, ⇡A, ⇡B, ⇡B), which must satisfy 0  ⇡J  ⇡J  1, along with an associated peer quality

di↵erence �s. The probability ⇡J is the probability that J households who prefer A are

assigned to school A and the probability ⇡J is the probability that J households who prefer

school B are assigned to school A. The associated peer quality di↵erence �s is that generated

by these assignments.

Step 2. The second step is to reduce the set of incentive compatible assignments that

need to be considered. Our first observation is that, in a second best assignment, ⇡J must

equal 0 if ⇡J is less than 1. Otherwise, some neighborhood J households with students

assigned to school A would prefer school B, while some with students assigned to school B

would prefer school A. It would be better to substitute those who prefer school A for those

who do not.

Our second observation is that, in a second best assignment, the peer quality di↵erence

�s cannot be negative. Intuitively, a negative peer quality di↵erence would create a cross-

hauling ine�ciency, since it would require more than 50% of A households to attend school

B, with an equal fraction of B households traveling the other way to school A. To prove that

the peer quality di↵erence cannot be negative, we show that any incentive compatible and

feasible assignment with negative �s can be dominated by either neighborhood assignment

or what we call the zero peer quality di↵erence assignment. Under the latter assignment,

students from A households that prefer school B given a zero peer quality di↵erence are

assigned to school B with probability 1; the other A students are assigned to school A with

probability M/(m + c); students from B households that prefer school A are assigned to

school A with probability 1; the other B students are assigned to school A with probability

c/(M+c). This assignment achieves an equal mix of A and B households in both schools and

thereby eliminates the peer quality di↵erence between them. Crucially, it does this by forcing

some students to attend the non-neighborhood school despite those households preferring the

neighborhood school.

The observation that �s must be non-negative implies that in any second best assignment

with non-zero �s, school A will be in excess demand. That follows because M + �s must
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exceed c, such that some fraction of neighborhood B households prefer school A, and this

fraction will exceed the fraction of neighborhood A households that prefer school B.

Step 3. The third step is to shed further light on the ⇡J ’s. In particular, having shown

that ⇡J equals 0 if ⇡J is less than 1, we show that ⇡J equals 0 even if ⇡J equals 1. The result

is obvious for neighborhood A households. After all, the underlying incentive problem is that

because of the peer di↵erence, too few of these households prefer school B. It cannot then

make sense to assign A households that prefer school B to school A. It is better to replace

these students with neighborhood B students that prefer school A.

The result is less obvious for neighborhood B households. Intuitively, to reduce the

peer di↵erence, one might assign B students to school A even if those households prefer

school B. This is the logic behind the zero peer quality di↵erence assignment and, under

some conditions, the school district will prefer this to neighborhood assignment.12 It turns

out, however, that this is never optimal. To establish this we show that starting with any

assignment in which ⇡B equals 1 and ⇡B is positive, we can increase the school district’s

payo↵ by reducing ⇡B to zero and raising ⇡A to keep school A full.13 We demonstrate this

by showing that the gains to households who benefit from the change exceed the losses to

households who lose.

Step 4. The fourth step is to turn attention to the ⇡J ’s. Our main result is that the second

best assignment either admits all A children whose parents prefer school A or admits all B

children whose parents prefer school A. To prove this result we show that any assignment

with neither ⇡A nor ⇡B equal to 1 can be changed to increase the school district’s payo↵. The

nature of the change depends on whether the initial assignment features A households that

prefer school B. If not, the initial assignment can be dominated by neighborhood assignment.

If so, it can be dominated by an assignment in which ⇡B is marginally decreased if µ is less

than c/2 and increased if µ exceeds c/2. The key implication of this step is that it rules out

the possibility that seats in school A are randomly allocated among interested households.

Step 5. Having established that the second best assignment involves either admitting all

A children whose parents prefer school A or admitting all B children whose parents prefer

school A, the fifth step is to understand other features of these assignments. In particular,

for a second best assignment in which ⇡A equals 1, we describe what ⇡B and �s must look

like. We refer to the resulting assignment as an A priority assignment. Similarly, we describe

what ⇡A and �s must look like for second best assignments in which ⇡B equals 1 and refer to

the resulting assignment as a B priority assignment. We also describe the payo↵s the school

12It generates a higher payo↵ when M exceeds 3c.
13More precisely, starting with any assignment that has those properties and is also feasible, incentive com-
patible and has non-negative �s.
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district obtains from A and B priority assignments.

Step 6. The sixth and final step is to compare the payo↵s generated by A and B priority

assignments and identify the conditions under which one dominates the other. Understanding

this, along with our knowledge of what these assignments look like, yields Proposition 3.

3.4.4 Optimal priorities under choice

Having stated Proposition 3 and outlined the proof, we now provide intuition for our key

result about optimal priorities under choice: that B households should receive priority at

school A when neighborhood inequality is large relative to transport costs. We consider

parameter values for which choice is optimal and study whether priority at school A should

be given to neighborhood A or B households.

To begin, note that we can write welfare under an A priority assignment as WA(✓A) =

✓A(M + c) � 2✓Ac, where ✓A = M�(c+4sA)
2M is the fraction of neighborhood A students that

attend school B and 4sA = 2µc
M�2µ is the equilibrium peer di↵erence given A priority.14

Similarly, we can write welfare under a B priority assignment as WB(✓B) = (M � c)(1 �
✓B)� 2✓Bc, where ✓B = M�(c�4sB)

2M and 4sB = M�(c�4sA)
2M .15 Given parameter values (M, c)

the “switching rates” ✓A and ✓B are su�cient statistics for the two components of welfare

associated with an assignment: the average match value (the first term in these welfare

expressions) and the average transport cost (the second term). The “optimal switching

rates” (i.e., that yield the first-best assignment) are ✓A = ✓B ⌘ ✓⇤ = M�c
2M , the fraction of

students better matched to the non-neighborhood school. It follows thatWA(✓⇤) = WB(✓⇤) ⌘
W ⇤ = (M�c)2

2M , where W ⇤ is welfare under the first-best assignment.

When µ equals 0, both 4sA and 4sB equal zero and ✓A and ✓B equal ✓⇤. However, when

µ exceeds 0, then both 4sA and 4sB are positive and we have that ✓A is less than ✓⇤ and ✓B

exceeds ✓⇤. In other words, when the neighborhoods are unequal, an A priority assignment

is associated with “under-switching” (because neighborhood A students do not want to lose

the peer di↵erence) and a B priority assignment is associated with “over-switching” (because

neighborhood B students want to gain the peer di↵erence). We can write WA(✓A) = W ⇤ �
e✓A(M � c), where e✓A ⌘ ✓⇤ � ✓A = 4sA

2M is the extent of under-switching. Similarly, we can

write WB(✓B) = W ⇤ � e✓B(M + c), where e✓B ⌘ ✓B � ✓⇤ = 4sB
2M is the extent of over-switching.

In both assignments, welfare decreases as we move away from the optimal switching rate (i.e.,

W 0
A(✓̃A),W

0
B(✓̃B) < 0). However, welfare decreases faster as we move away from the optimal

switching rate in a B assignment. That is because over-switching increases transport costs,

14This follows from WA = (M�c)2�(M�c)4sA
2M and 4sA = 2µc

M�2µ in equation (19) of the Online Appendix.
15This follows from WB = (M�c)2�(M+c)4sB

2M and 4sB = 2µc
M+2µ in equation (22) of the Online Appendix.
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while under-switching decreases transport costs.16 This implies that if switching distortions

are similar across the two priority regimes, then A priority is preferred on transport cost

grounds. However, if switching rate distortions yield less over-switching in B priority than

under-switching in A priority, then B priority could be preferred on the grounds that it

yields better matches (despite higher transport costs). More formally, we see that B priority

assignment is preferred when
e✓B
e✓A

< M�c
M+c , where the left-hand side is the ratio of over- to

under-switching and the right-hand is a threshold that is below one and that depends on the

scope for matching.

Since
e✓B
e✓A

= 4sB
4sA

= M�2µ
M+2µ , we obtain the result that B priority is preferred when µ exceeds

c
2 . But why is the ratio of over- to under-switching decreasing in µ? The key insight is that

a B priority assignment imposes a natural brake on the process by which larger µ increases

the extent of non-optimal switching. Specifically, as µ increases and a higher fraction of

households switch from neighborhood B into school A, the peer di↵erence increases by less

than it would otherwise (because conditional on µ the composition of the two schools becomes

more similar). There is no such brake in an A priority assignment. Instead, the reduction

in switching out of neighborhood A that follows an increase in µ magnifies the resulting

increase in the peer di↵erence between the schools and hence further limits switching out of

neighborhood A. This explains why higher levels of neighborhood inequality are associated

with a lower ratio of over- to under-switching and hence a preference for B priority.

4 Conclusion

We have analyzed a central problem facing districts that operate school choice: how to

prioritize applicants to oversubscribed schools. This problem is often framed in terms of an

equity-e�ciency trade-o↵: equity priorities can broaden access to oversubscribed schools, and

reduce school segregation, but only by increasing transport costs and thereby reducing wel-

fare. By assuming heterogeneous preferences, we added another dimension to this problem:

the extent to which priorities facilitate good matches of students to schools. By assuming

peer preferences, we ensured that this matching process was complicated by parents’ desire

to attend schools that enroll a✏uent students. Our model delivers what we believe is a novel

insight: equity priorities can improve e�ciency by limiting the extent of school segregation

and thereby aiding parents’ search for a good match.

While we expect that this insight will remain true in richer models, there is much scope

16Under- and over-switching reduces match values relative to the first-best assignment, and the reduction is
smaller for over-switching, but this does not compensate for the increased transport costs.
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for further analysis of the problem we have studied. For example, while our model assumed

that transport costs were the same for both types of households, it would be interesting to

relax that assumption, perhaps by allowing the school district to choose school priorities

and transport subsidies. This is especially relevant given wide variation across U.S. school

districts in the extent to which transport is subsidized (McShane and Shaw, 2020). One could

also relax the assumption that peer preferences were the same for both types of households,

although the implications here seem more obvious and less interesting. For example, if more-

advantaged families had stronger peer preferences, then, ceteris paribus, welfare would be

increasing in the extent of segregation and the case for equity priorities would be weaker.

It would also be interesting to extend the model to multiple schools and neighborhoods.

It seems possible that the district would continue to choose between neighborhood priorities

and an equity priority, but where the latter involved parents choosing schools in order of

disadvantage (i.e., parents in the most-disadvantaged neighborhoods choose first). However,

tackling the multiple school case would be considerably more challenging.

The model could also be extended to allow parents choose where to live.17 One possibility

is that equity priorities incentivize higher-income households to live in disadvantaged neigh-

borhoods, thereby reducing residential segregation and further aiding the matching process.

In contrast, it seems clear that extending the model to allow exit (e.g., to private schools)

will weaken the case for equity priorities, since some more-advantaged families will prefer

to exit than to attend unpopular schools, potentially increasing school segregation (Bibler

and Billings, 2020; Idoux, 2022; Bjerre-Nielsen and Gandil, 2023). It would be interesting

to analyze whether districts could combat exit by deploying auxiliary policies such as sub-

sidized transport out of higher-income neighborhoods, special (e.g., magnet) programs in

disadvantaged schools or property tax rebates for families with children in public schools.

17Some recent papers explore the interaction between school and residential choice (Agostinelli et al., 2023;
Greaves and Turon, 2021; Grigoryan, 2021; Park and Hahm, 2023; Xu, 2019). This builds on some earlier
work that considers more limited forms of choice but also allows for peer preferences (Epple and Romano,
2003).
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Appendix A. Proof of Proposition 3

In the main paper we discussed how Proposition 3 was established, and highlighted the key
steps of the proof. In this Appendix we provide a more formal exposition of this proof. This
Appendix states several Lemmata. Appendix B contains the proofs of these results along
with the proof of Proposition 1. Appendix C collects together the Figures referred to in
Appendix B.

We begin by restating the equations in the main text (see the main text for more discussion
and definitions). These equations are:

• Feasible assignment condition:

ˆ M

�M

(⇡A(m) + ⇡B(m))
dm

2M
= 1. (1)

• Average socio-economic status of the two schools given assignment (⇡A(m), ⇡B(m)):

sA = µ

ˆ M

�M

(⇡A(m)� ⇡B(m))
dm

2M
, (2)

and

sB = µ

ˆ M

�M

(⇡B(m)� ⇡A(m))
dm

2M
. (3)

• Expected payo↵ to neighborhood A household with match benefit m:

⇡A(m) (sA +m) + (1� ⇡A(m)) (sB � c) (4)

• Expected payo↵ to neighborhood B household with match benefit m:

⇡A(m) (sA +m� c) + (1� ⇡A(m)) sB. (5)

• School district objective function:

W =

ˆ M

�M

[m⇡A(m) +m⇡B(m)� c (1� ⇡A(m))� c⇡B(m)]
dm

2M
. (6)

• First best assignment:

⇡A(m) =

⇢
1 if m > �c
0 if m < �c

, (7)

and

⇡B(m) =

⇢
1 if m > c
0 if m < c

. (8)
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• Incentive compatibility constraint for households in neighborhood A, for all m 2
[�M,M ] and any m0 2 [�M,M ]

⇡A(m) (sA +m) + (1� ⇡A(m)) (sB � c) � ⇡A(m
0) (sA +m) + (1� ⇡A(m

0)) (sB � c) .
(9)

• Incentive compatibility constraint for households in neighborhood B, for all m 2
[�M,M ] and any m0 2 [�M,M ]

⇡B(m) (sA +m� c)+ (1� ⇡B(m)) sB � ⇡B(m
0) (sA +m� c)+ (1� ⇡B(m

0)) sB. (10)

• Second best assignment when M > c, µ > c/2 and M > c+ 2µ

⇡A(m) =

(
1 if m � �c� 2µc

M�2µ

0 if m < �c� 2µc
M�2µ

, (11)

and

⇡B(m) =

8
<

:

M�c� 2µc
M�2µ

M�c+ 2µc
M�2µ

if m � c� 2µc
M�2µ

0 if m < c� 2µc
M�2µ

. (12)

• Second best assignment when M > c, µ < c/2 and M > c+
p

µ2 + 4cµ� µ

⇡A(m) =

8
<

:

M+c� 2µc
M+2µ

M+c+ 2µc
M+2µ

if m � �c� 2µc
M+2µ

0 if m < �c� 2µc
M+2µ

, (13)

and

⇡B(m) =

(
1 if m � c� 2µc

M+2µ

0 if m < c� 2µc
M+2µ

. (14)

A.1: The incentive compatibility constraints

The first step is to simplify the incentive compatibility constraints. Consider first the con-
straints for A households. Clearly, if sA + m exceeds sB � c, so that the household prefers
that their child is assigned to school A, then the household will want to report an m0 that
maximizes ⇡A(m0) - the probability they are assigned to school A. Thus, incentive compati-
bility requires that ⇡A(m) equal max ⇡A(m0). Similarly, if sA +m is less than sB � c, so that
the household prefers that their child is assigned to school B, then the household will want to
report an m0 that minimizes ⇡A(m0). Thus, incentive compatibility requires that ⇡A(m) equal
min ⇡A(m0). A similar story holds for neighborhood B households. If sA + m � c exceeds
sB, then the household will want to report an m0 that maximizes ⇡B(m0). Thus, incentive
compatibility requires that ⇡B(m) equal max ⇡B(m0). On the other hand, if sA + m � c is
less than sB, then the household will want to report an m0 that minimizes ⇡B(m0). Thus,
incentive compatibility requires that ⇡B(m) equal min ⇡B(m0).

This discussion motivates:
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Lemma 1 An assignment (⇡A(m), ⇡B(m)) is incentive compatible if and only if

⇡A(m) =

⇢
⇡A if m � �c��s
⇡A if m < �c��s

, (15)

and

⇡B(m) =

⇢
⇡B if m � c��s
⇡B if m < c��s

, (16)

where ⇡J = max ⇡J(m0) and ⇡J = min ⇡J(m0) for J 2 {A,B} and �s solves the equation

�s = 2µ[Pr (m > �c��s) ⇡A + Pr (m < �c��s) ⇡A

� Pr (m > c��s) ⇡B � Pr (m < c��s) ⇡B]. (17)

It follows from Lemma 1 that incentive compatible assignments can be characterized by
four probabilities (⇡A, ⇡A, ⇡B, ⇡B), which must satisfy 0  ⇡J  ⇡J  1, along with an
associated peer quality di↵erence �s, which has to satisfy (17). The associated assignment
is then given by (15) and (16). This allows us to describe incentive compatible assignments
with the notation {(⇡A, ⇡A, ⇡B, ⇡B) ,�s}.1 Intuitively, the probability ⇡J is the probability
that households from neighborhood J who want their children to attend school A are assigned
to school A and ⇡J is the probability that households from neighborhood J who want their
children to attend school B are assigned to school A.

A.2: Two simplifying observations

Our first observation about second best assignments concerns the ⇡J ’s. Intuitively, it would
not seem sensible for the school district to assign neighborhood J children to school A whose
parents do not want them to attend school A if it were simultaneously denying admission to
neighborhood J children whose parents do want their children to attend school A. After all,
it would be better to simply substitute those who did want to attend for those who did not.
This logic is confirmed by the following Lemma:

Lemma 2 Suppose that {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment. Then, if ⇡A < 1
and M > max {c+�s,�c��s}, it must be the case that ⇡A = 0. Moreover, if ⇡B < 1 and
M > max {c��s,�c+�s}, it must be the case that ⇡B = 0.

The caveat that M exceeds max {c+�s,�c��s} just ensures that there are some A house-
holds who do and do not want their children to attend school A. If this is not the case, then
either ⇡A or ⇡A is irrelevant for the school district’s payo↵. Similarly, the requirement that
M exceeds max {c��s,�c+�s} ensures that there are some B households who do and
some who do not want their children to attend school A.

Our second observation concerns the peer quality di↵erence. Intuitively, it seems that
this must be non-negative for a second best assignment. Creating a negative peer quality

1
To the extent that equation (17) uniquely defines �s, given (⇡A,⇡A,⇡B ,⇡B), then it is only necessary

to specify (⇡A,⇡A,⇡B ,⇡B) to characterize an assignment. While it is the case that there is a unique �s
corresponding to (⇡A,⇡A,⇡B ,⇡B) for the assignments we consider, we include �s for clarity.
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di↵erence would require sending more than 50% of A households to school B, which would
seem to create a cross-hauling ine�ciency. This conjecture is confirmed in:

Lemma 3 Suppose that {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment. Then, �s � 0.

To prove this result we show that any feasible, incentive compatible assignment
{(⇡A, ⇡A, ⇡B, ⇡B) ,�s} which is such that �s is negative can be dominated by either neigh-
borhood assignment or what we call the zero peer quality di↵erence assignment. The latter
assignment involves assigning A households who wish to attend school B given a zero peer
quality di↵erence to school B with probability 1; assigning A households who wish to attend
school A to school A with probability M/(M+c); assigning B households who wish to attend
school A to school A with probability 1; and assigning B households who do not wish to
attend school A to school A with probability c/(M + c). Crucially, this assignment forces
some B households to attend school A and some A households to attend school B even when
they do not want to. In this way, it achieves an equal mix of A and B households in both
schools and thereby eliminates the peer quality di↵erence between the two schools.

An important implication of Lemma 3 is that in a second best assignment there are
always some neighborhood B households who would like their children to attend school A.
This follows since M +�s must exceed c. The consequence of this is that school A will be
the school in excess demand.

A.3: The ⇡J ’s

Lemma 2 tells us that ⇡J equals 0 if ⇡J is less than 1, but what about if ⇡J equals 1?
Intuitively, it seems that ⇡A should equal 0 even if ⇡A is equal to 1. Assigning neighborhood
A children to school A whose parents do not want them to attend school A would not seem
to make sense when the nature of the incentive problem is that parents will be too eager
to send their children to school A because of the peer quality di↵erence. Surely it would
be better to replace such children with B children whose parents do want their children to
attend school A? The following result confirms this logic.

Lemma 4 Suppose that {(1, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment such that M >
c+�s. Then, ⇡A = 0.

The caveat that M must exceed c + �s, reflects the fact that if all A households wish
their students to attend school A (which would be the case if M is less than c + �s) then
it does not matter what ⇡A is. To prove Lemma 4 we start with a feasible, incentive com-
patible assignment {(1, ⇡A, ⇡B, ⇡B) ,�s} such that �s is non-negative and ⇡A is positive.
We then show that, if some neighborhood A households wish their children to attend school
B, marginally decreasing ⇡A and compensating by increasing ⇡B must increase the school
district’s payo↵. The analysis takes into account that such a change will impact the peer
quality di↵erence �s.

It is much less obvious that ⇡B must equal 0 when ⇡B equals 1. Intuitively, it seems
possible that assigning B children to school A whose parents do not want them to attend
school A may be justified on the grounds of reducing the peer quality di↵erence. Indeed, this
was the logic behind the zero peer quality di↵erence assignment and this assignment yields a
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higher payo↵ for the school district than neighborhood assignment under some conditions.2

It turns out, however, that it is never optimal to force neighborhood B households to attend
school A.

Lemma 5 Suppose that {(⇡A, ⇡A, 1, ⇡B) ,�s} is a second best assignment such that M >
�c+�s. Then, ⇡B = 0.

The caveat that M exceeds �c+�s ensures that there are some neighborhood B house-
holds who wish their children to go to school B. If that is not the case, ⇡B is irrelevant.
Lemma 5 is proved by showing that if we start with a feasible, incentive compatible assign-
ment {(⇡A, 0, 1, ⇡B) ,�s} such that�s is non-negative, ⇡B is positive, and some B households
wish their children to go to school B, we can always increase the school district’s payo↵ by
reducing ⇡B to zero and raising ⇡A to keep school A full. This is established by keeping track
of all the impacted households and showing that the gains of the households who benefit
from the change exceed the losses of the households who lose.

A.4: The ⇡J ’s

We now turn our attention to the ⇡J ’s. Our main result is that the second best assignment
either admits all A children whose parents want them to attend school A or admits all B
children whose parents want them to attend school A. The most important policy implication
of this is that it rules out the possibility that seats in school A are randomly allocated among
interested households.

Lemma 6 Assume that c 6= 2µ and suppose that {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best
assignment. Then, either ⇡A = 1 or ⇡B = 1.

To prove this result we show that if it is not the case that either ⇡A or ⇡B equals 1, it
is always possible to change the assignment in such a way as to create a gain in the school
district’s payo↵. The nature of the change depends on the assignment that we start with.
In particular, it matters whether or not in the original assignment any neighborhood A
households wish their children to attend school B. If all A households wish their children to
attend school A in the original assignment, it can be dominated by neighborhood assignment.
If some A households wish their children to attend school B, the original assignment can be
dominated by an assignment in which ⇡B is marginally decreased if c exceeds 2µ and increased
if c is less than 2µ.

A.5: A priority assignments

Having established that the second best assignment involves either admitting all A children
whose parents want them to attend school A or admitting all B children whose parents
want them to attend school A, we next turn to understanding the other features of these
assignments. This sub-section considers assignments in which ⇡A equals 1.

2
The condition is that M exceed 3c.

6



Lemma 7 Suppose that {(1, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment. Then, if M 
c+ 2µ, ⇡A 2 [0, 1] and (⇡B, ⇡B,�s) = (0, 0, 2µ), while if M > c+ 2µ

(⇡A, ⇡B, ⇡B,�s) =

 
0,

M � c� 2µc
M�2µ

M � c+ 2µc
M�2µ

, 0,
2µc

M � 2µ

!
. (18)

This result reflects the fact that, if M is less than c+2µ, all A households wish to attend
school A. Since A households are given priority, there is no room for interested B households.
This implies that both ⇡B and ⇡B must equal 0. It also means that the peer quality di↵erence
is 2µ. It does not matter what ⇡A is in this case, because all A households wish to attend
school A. If M exceeds c + 2µ, then, some A households wish to attend school B which
creates some seats for interested B households. The peer quality di↵erence in this case is
2µc/(M�2µ), which is smaller than 2µ because of the B children in school A and A children
in school B. In this case, ⇡A is equal to 0 by Lemma 4 and ⇡B is equal to 0 by Lemma 2.

We will describe an assignment {(1, ⇡A, ⇡B, ⇡B) ,�s} such that (⇡A, ⇡B, ⇡B) and �s sat-
isfy the conditions of Lemma 7 as an A priority assignment. Using (6), we can develop a
simple expression for the school district’s payo↵ under an A priority assignment.

Lemma 8 Suppose that {(1, ⇡A, ⇡B, ⇡B) ,�s} is an A priority assignment. Then, the school
district’s payo↵ is

WA =

⇢
0 if M  c+ 2µ

(M�c)2�(M�c)�sA
2M if M > c+ 2µ

, (19)

where

�sA ⌘ 2µc

M � 2µ
.

A.6: B Priority Assignments

Turning to assignments in which ⇡B equals 1, we have:

Lemma 9 Suppose that {(⇡A, ⇡A, 1, ⇡B) ,�s} is a second best assignment. Then, if M 
c�2µ+

p
(2µ+c)2+8cµ

2 , ⇡A 2 [0, ⇡A] and

(⇡A, ⇡B,�s) =

 
M + c� 2µc

M+2µ

2M
, 0,

2µc

M + 2µ

!
, (20)

while, if M >
c�2µ+

p
(2µ+c)2+8cµ

2 ,

(⇡A, ⇡A, ⇡B,�s) =

 
M + c� 2µc

M+2µ

M + c+ 2µc
M+2µ

, 0, 0,
2µc

M + 2µ

!
. (21)

If M is less than
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2 then some B households wish to attend

school A but no A households wish to attend school B. B priority means that interested
B households are assigned to school A which forces ⇡A below 1. Lemma 5 implies that ⇡B

7



equals 0. It does not matter what ⇡A is in this case, as long as it is less than ⇡A, because all
A households wish to attend school A. The peer quality di↵erence is 2µc/(M + 2µ) which is
smaller than 2µ because of the mixing of children across schools.

If M exceeds
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2, then some A households wish to attend

school B. Because of B priority and the fact that the fraction of neighborhood B switchers
exceeds the fraction of neighborhood A switchers, ⇡A is less than 1. Lemma 2 implies that
⇡A equals 0 and Lemma 5 implies that ⇡B equals 0. The peer quality di↵erence is again
2µc/(M + 2µ). The fact that this is the same as in the previous case reflects the fact that,
under B priority, the fraction of B households in school A is determined by the preferences
of neighborhood B households.

We will describe an assignment {(⇡A, ⇡A, 1, ⇡B) ,�s} such that (⇡A, ⇡A, ⇡B) and �s sat-
isfy the conditions of Lemma 9 as a B priority assignment. We can use Lemma 9 and (6), to
develop a simple expression for the school district’s payo↵ under a B priority assignment.

Lemma 10 Suppose that {(⇡A, ⇡A, 1, 0) ,�s} is a B priority assignment. Then, the school
district’s payo↵ is

WB =

8
<

:

�
M+�sB�c

2M

� �
M��sB�c

2M � c
�
if M  c�2µ+

p
(2µ+c)2+8cµ

2

(M�c)2�(M+c)�sB
2M if M >

c�2µ+
p

(2µ+c)2+8cµ

2

, (22)

where

�sB =
2µc

M + 2µ
.

A.7: A vs B priority assignments

The next task is to compare the school district’s payo↵ under A and B priority assignments
using the expressions presented in Lemma 8 and 10. This yields:

Lemma 11 i) If c > 2µ, the school district’s payo↵ is higher under an A priority assignment.
ii) If c < 2µ, the school district’s payo↵ is higher under an A priority assignment if M <
c� µ+

p
µ2 + 4cµ, and higher under a B priority assignment if M > c� µ+

p
µ2 + 4cµ.

A.8: Establishing Proposition 3

We are now ready to establish Proposition 3. Suppose first that c exceeds 2µ. Lemma 6
along with Lemma 7 and 9 imply that if {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment
it is either an A priority assignment or a B priority assignment. By Lemma 11, the school
district’s payo↵ is higher under an A priority assignment. Thus, the second best assignment
must be an A priority assignment.

From Lemma 7, we know that if M is less than c + 2µ, an A priority assignment has
⇡A 2 [0, 1] and (⇡A, ⇡B, ⇡B,�s) equal to (1, 0, 0, 2µ). As we noted, it does not matter what
⇡A is, because all A households want to attend school A. It follows that, if M is less than
c+2µ, the second best assignment is (⇡A(m), ⇡B(m)) = (1, 0) for all m. If M exceeds c+2µ,
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Lemma 7 tells us that an A priority assignment is such that

{(⇡A, ⇡A, ⇡B, ⇡B) ,�s} =

( 
1, 0,

M � c� 2µc
M�2µ

M � c+ 2µc
M�2µ

, 0

!
,

2µc

M � 2µ

)
.

Accordingly, from Lemma 1, the second best assignment when M exceeds c+ 2µ is

⇡A(m) =

(
1 if m � �c� 2µc

M�2µ

0 if m < �c� 2µc
M�2µ

,

and

⇡B(m) =

8
<

:

M�c� 2µc
M�2µ

M�c+ 2µc
M�2µ

if m � c� 2µc
M�2µ

0 if m < c� 2µc
M�2µ

.

This confirms part i) of the proposition.
Now suppose that c is less than 2µ. Again, Lemma 6 along with Lemma 7 and 9 imply that

if {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment it is either an A priority assignment or a
B priority assignment. By Lemma 11, ifM is less than c�µ+

p
µ2 + 4cµ, the school district’s

payo↵ is higher under an A priority assignment, while if M exceeds c� µ+
p

µ2 + 4cµ, the
school district’s payo↵ is higher under a B priority assignment.

Note that if c is less than 2µ, we have that
p

µ2 + 4cµ � µ is less than 2µ and thus if
M is less than c � µ +

p
µ2 + 4cµ it is also true that M is less than c + 2µ. From Lemma

7, we know that if M is less than c + 2µ, an A priority assignment has ⇡A 2 [0, 1] and
(⇡A, ⇡B, ⇡B,�s) equal to (1, 0, 0, 2µ). As just noted, it does not matter what ⇡A is, because
all A households want to attend school A. It follows that, if M is less than c�µ+

p
µ2 + 4cµ,

the second best assignment is (⇡A(m), ⇡B(m)) = (1, 0) for all m.
Note also that if c is less than 2µ, we have that

c� µ+
p

µ2 + 4cµ >
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
.

Moreover, if M exceeds
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2, Lemma 9 tells us that a B priority

assignment is such that

{(⇡A, ⇡A, ⇡B, ⇡B) ,�s} =

( 
M + c� 2µc

M+2µ

M + c+ 2µc
M+2µ

, 0, 1, 0

!
,

2µc

M + 2µ

)
.

Accordingly, from Lemma 1, the second best assignment when M exceeds c�µ+
p

µ2 + 4cµ
is

⇡A(m) =

8
<

:

M+c� 2µc
M+2µ

M+c+ 2µc
M+2µ

if m � �c� 2µc
M+2µ

0 if m < �c� 2µc
M+2µ

,

and

⇡B(m) =

(
1 if m � c� 2µc

M+2µ

0 if m < c� 2µc
M+2µ

.

This confirms part ii) of the Proposition.
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Appendix B. Proof of Proposition 1 and Lemmas 1-11

B.1: Derivation of (6)

The sum of households’ expected payo↵s is
´M
�M (⇡A(m) (sA +m) + (1� ⇡A(m)) (sB � c)) dm

2M

+
´M
�M (⇡B(m) (sA +m� c) + (1� ⇡B(m)) sB)

dm
2M

.

After some rearrangement, this can be written as:

(sA � sB)
⇣´M

�M ⇡A(m) dm2M +
´M
�M ⇡B(m) dm2M

⌘
+ 2sB

+
´M
�M [m⇡A(m) +m⇡B(m)� c (1� ⇡A(m))� c⇡B(m)] dm

2M .

Using (2) and (3), we can show that

(sA � sB)

✓ˆ M

�M

⇡A(m)
dm

2M
+

ˆ M

�M

⇡B(m)
dm

2M

◆
+ 2sB = 0.

B.2: Proof of Proposition 1

First consider the problem of choosing an assignment (⇡A(m), ⇡B(m)) to maximize the ob-
jective function (6) ignoring the feasibility constraint. The first order conditions for ⇡A(m)
and ⇡B(m) imply that: if m + c > 0, then ⇡A(m) = 1; if m + c < 0, then ⇡A(m) = 0; if
m� c > 0, then ⇡B(m) = 1; and if m� c < 0, then ⇡B(m) = 0.

Now observe that these rules satisfy the feasibility constraint. If M > c, then they imply
that ˆ M

�M

(⇡A(m) + ⇡B(m))
dm

2M
=

ˆ M

�c

dm

2M
+

ˆ M

c

dm

2M

=
M + c

2M
+

M � c

2M
= 1.

If M < c, then they imply that
ˆ M

�M

(⇡A(m) + ⇡B(m))
dm

2M
=

ˆ M

�M

dm

2M
=

2M

2M
= 1.

The unconstrained optimal rules must therefore solve the constrained problem.

B.3: Proof of Lemma 1

Suppose that the assignment (⇡A(m), ⇡B(m)) is incentive compatible. Then (15) and (16)
hold as explained in the paragraph preceding the statement of Lemma 1. Given (15) and
(16), then (2) and (3) imply that

sA = µ [Pr(m > �c��s)⇡A + (1� Prm > �c��s)) ⇡A]
�µ [Pr (m > c��s)) ⇡B + (1� Pr (m > c��s)) ⇡B]
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and
sB = µ [Pr (m > �c��s) (1� ⇡A) + (1� Pr (m > �c��s)) (1� ⇡A)]

�µ [Pr (m > c��s) (1� ⇡B) + (1� Pr (m > c��s)) (1� ⇡B)] .

Thus, we have that

�s = sA � sB = 2µ


Pr (m > �c��s) ⇡A + (1� Pr (m > �c��s)) ⇡A

�Pr(m > c��s)⇡B � (1� Pr (m > c��s)) ⇡B

�
,

which is (17).
Conversely, suppose that there exist numbers (⇡A, ⇡A, ⇡B, ⇡B) such that 0  ⇡J  ⇡J 

1 and that �s satisfies (17). Then the assignment defined by (15) and (16) satisfies the
constraints (9) and (10) when sA and sB are given by

sA = µ [Pr (m > �c��s) ⇡A + (1� Pr (m > �c��s)) ⇡A]
�µ [Pr (m > c��s)) ⇡B + (1� Pr (m > c��s)) ⇡B]

and
sB = µ [Pr (m > �c��s) (1� ⇡A) + (1� Pr (m > �c��s)) (1� ⇡A)]

�µ [Pr (m > c��s)) (1� ⇡B) + (1� Pr (m > c��s)) (1� ⇡B)] .

The assignment defined by (15) and (16) is therefore incentive compatible.

B.4: Proof of Lemma 2

Suppose ⇡A < 1, M > c+�s, and ⇡A > 0. Consider increasing ⇡A by "/Pr (m > �c��s)
and decreasing ⇡A by "/ (1� Pr (m > �c��s)) where " is small enough to prevent violation
of boundary conditions. Note that the assumption that M > max {c+�s,�c��s} implies
that 1 > Pr (m > �c��s) > 0. This change has no impact on �s and hence the household
types choosing the various options. The feasibility constraint remains satisfied. The change
in the school district’s payo↵ is

[E(m|m > �c��s)� E(m|m < �c��s)] ",

which is positive. Intuitively, the change reduces the assignment of A households who do
not want their children to attend school A and replaces them with an equal number of A
households who do want their children to attend school A. This has no impact on feasibility
or peer quality, but does increase match benefits.

A similar argument applies for B. Suppose ⇡B < 1 and ⇡B > 0. Consider increasing
⇡B by "/Pr (m > c��s)) and decreasing ⇡B by "/ (1� Pr (m > c��s)). The assumption
that M > max {c��s,�c+�s} implies that 1 > Pr (m > c��s) > 0. This change has
no impact on �s and hence the household types choosing the various option. The feasibility
constraint remains satisfied. The change in the objective function is

[E(m|m > c��s)� E(m|m < c��s)] ",

which is positive.
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B.5: Proof of Lemma 3

Consider a feasible, incentive compatible assignment {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} which is such
that �s < 0. We will show that this assignment can be dominated either by neighborhood
assignment or by the zero peer quality di↵erence assignment that is discussed in Appendix
A following the statement of Lemma 3.

It is helpful to first calculate the school district’s payo↵s for our two benchmark assign-
ments. Neighborhood assignment obviously generates a payo↵ of 0. To understand the payo↵
from the zero peer quality di↵erence assignment, consider Figure C1 which illustrates how
the di↵erent household types are assigned to the two schools. There are four groups of house-
holds: A households who prefer school B given a zero peer quality di↵erence; A households
who prefer school A; B households who prefer school B; and B households who prefer school
A. The first and fourth groups get their preferred school; the second and third groups get
their preferred school with probabilities M/(M+c) and 1�c/(M+c) respectively. Summing
up the payo↵s generated by the four groups, we get

M � c

2M
(�c) +

M + c

2M

✓
(

M

M + c
)
M � c

2
+ (1� M

M + c
)(�c)

◆

+
M + c

2M

✓
(

c

M + c
)(
c�M

2
� c) + (1� c

M + c
)(0)

◆
+

M � c

2M
(
M + c

2
� c).

This reduces to
M � 3c

2
.

Note that this assignment dominates neighborhood assignment when M > 3c.
We now turn to the negative �s assignment. In this assignment, it must be the case that

more than 1/2 of the households living in neighborhood A attend school B and more than
1/2 of the households living in neighborhood B attend school A. We may assume without
loss of generality that ⇡B = 1. To see this suppose that ⇡B < 1. Then, by Lemma 2, if
M > c � �s, it must be the case that ⇡B = 0. But, since �s < 0 school B has the peer
advantage and it cannot be that more than 1/2 of neighborhood B households wish to attend
school A. Thus, the fraction of neighborhood B households attending school A is less than
1/2, which contradicts the fact that �s < 0. If M  c � �s, then ⇡B is irrelevant since
neighborhood B households wish to attend school B. Thus, it can be set equal to 1.

There are a number of possibilities to consider. There are two main cases, each of which
has three sub-cases. The two main cases are ⇡A = 0 and ⇡A > 0. In each case, the three
sub-cases are i) ��s < M � c, ii) M � c  ��s < M + c; and iii) M + c  ��s. We tackle
each in turn.

12



B.5.1: ⇡A = 0

i) ��s < M � c This situation is depicted in Figure C2. There are again four groups of
households. Summing up the payo↵s generated by the four groups, we get

M � c��s

2M
(�c) +

M + c+�s

2M

✓
⇡A(

M � c��s

2
) + (1� ⇡A)(�c)

◆

+
M + c��s

2M

✓
⇡B(

c��s�M

2
� c) + (1� ⇡B)(0)

◆
+

M � c+�s

2M
(
M + c��s

2
� c).

This can be rearranged to yield

�c+
M + c+�s

2M
⇡A(

M + c��s

2
)+

M + c��s

2M
⇡B(

�c��s�M

2
)+

M � c+�s

2M
(
M � c��s

2
).

We will further simplify this expression by using what we know about the determinants of
the peer di↵erence.

The fraction of A households attending school A is

M + c+�s

2M
⇡A

and thus, since the assignment is feasible, the fraction of B households attending school A
must be

1� M + c+�s

2M
⇡A.

Accordingly, we have that

�s = 2µ

✓
M + c+�s

2M
⇡A �

✓
1� M + c+�s

2M
⇡A

◆◆

= 2µ

✓
M + c+�s

M
⇡A � 1

◆

It follows that
M + c+�s

2M
⇡A =

�s+ 2µ

4µ
. (23)

Similarly, the fraction of B households attending school A is

M + c��s

2M
⇡B +

M � c+�s

2M

and thus, since the assignment is feasible, the fraction of A households attending school A
must be

1� M + c��s

2M
⇡B � M � c+�s

2M
.

Accordingly, we have that

�s = 2µ

✓
1� M + c��s

2M
⇡B � M � c+�s

2M
�
✓
M + c��s

2M
⇡B +

M � c+�s

2M

◆◆

= 2µ

✓
1� M + c��s

M
⇡B � M � c+�s

M

◆
.
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It follows that
M + c��s

2M
⇡B =

2µc��s (2µ+M)

4µM
. (24)

Substituting (23) and (24) into the school district’s objective function yields

� c+ (
�s+ 2µ

4µ
)(
M + c��s

2
) + (

2µc��s (2µ+M)

4µM
)(
�c��s�M

2
) +

(M � c)2 ��s2

4M
.

(25)
Note that this payo↵ depends only on �s.

Now consider the thought experiment of choosing a di↵erent level of �s. Observe that
setting �s = 0, would yield a payo↵ of (M � 3c)/2 which is the payo↵ generated by the zero
peer quality di↵erence assignment. Di↵erentiating (25) with respect to �s, we obtain

M + c� 2�s� 2µ

8µ
+

2�s (2µ+M) +M (M + 2µ+ c)

8µM
� �s

2M
.

After some cancellations and rearranging, this reduces to

M + c

4µ
,

which is positive. Thus, the payo↵ generated by the negative �s assignment, is less than
that generated by the zero peer quality di↵erence assignment.

ii) M � c  ��s < M + c This situation is depicted in Figure C3. There are now just
three groups of households because all B households wish to attend school B. Summing up
the payo↵s generated by the three groups, we get

M � c��s

2M
(�c)+

M + c+�s

2M

✓
⇡A(

M � c��s

2
) + (1� ⇡A)(�c)

◆
+⇡B(�c)+(1�⇡B)(0).

This simplifies to

�c+
M + c+�s

2M
⇡A(

M + c��s

2
)� ⇡Bc,

which equals

�c+
(M + c)2 ��s2

4M
⇡A � ⇡Bc.

We know that the fraction of B households attending school A is ⇡B and, thus, since
the assignment is feasible, the fraction of A households attending school A must be 1� ⇡B.
Accordingly, we have that �s = 2µ(1� 2⇡B).

The fact that �s < 0, implies that ⇡B > 1/2. Moreover, since ⇡A 2 [0, 1] and �s2 �
(M � c)2, we have that the school district’s payo↵ is less than

�3

2
c+

(M + c)2 � (M � c)2

4M
.

This equals

�3

2
c+

4cM

4M
= � c

2
.

This payo↵ is negative and hence the negative �s assignment generates a lower payo↵ than
does neighborhood assignment.
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iii) M + c  ��s In this case, there are now just two groups of households because all
households wish to attend school B. Given that ⇡A = 0, all A households are assigned to
school B. Feasibility demands that ⇡B = 1, so all B households are assigned to school A.
This policy is obviously dominated by neighborhood assignment.

B.5.2: ⇡A > 0

i) ��s < M � c In this case, Lemma 2 implies that ⇡A = 1. This situation is depicted in
Figure C4. There are four groups of households. Summing up the payo↵s generated by the
four groups, we get

M � c��s

2M

✓
⇡A(

�c��s�M

2
) + (1� ⇡A)(�c)

◆
+

M + c+�s

2M
(
M � c��s

2
)

+
M + c��s

2M

✓
⇡B(

c��s�M

2
� c) + (1� ⇡B)(0)

◆
+

M � c+�s

2M
(
M + c��s

2
� c).

This can be rearranged to yield

M � c��s

2M
⇡A(

c��s�M

2
) +

M � c+�s

2M
(
M � c��s

2
)

+
M + c��s

2M
⇡B(

�c��s�M

2
) +

M � c+�s

2M
(
M � c��s

2
).

The fraction of A households attending school A is

M + c+�s

2M
+

M � c��s

2M
⇡A

and thus, since the assignment is feasible, the fraction of B households attending school A
must be

1� M + c+�s

2M
� M � c��s

2M
⇡A.

Accordingly, we have that

�s = 2µ

✓
M + c+�s

M
+

M � c��s

M
⇡A � 1

◆
.

It follows that
M � c��s

2M
⇡A =

M�s� (c+�s)2µ

4µM
. (26)

Similarly, the fraction of B households attending school A is

M + c��s

2M
⇡B +

M � c+�s

2M

and thus, since the assignment is feasible, the fraction of A households attending school A
must be

1� M + c��s

2M
⇡B � M � c+�s

2M
.
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Accordingly, we have that

�s = 2µ

✓
1� M + c��s

M
⇡B � M � c+�s

M

◆
.

It follows that
M + c��s

2M
⇡B =

(c��s)2µ��sM

4µM
. (27)

Substituting (26) and (27) into the school district’s objective function yields

M�s� (c+�s)2µ

8µM
(c��s�M) +

(M � c)2 ��s2

2M
+

(c��s)2µ��sM

8µM
(�c��s�M).

Again, this payo↵ depends only on �s. Rearranging and cancelling, we can write this as:

(M � c)2 � c2

2M
+

(2µ+ c)�s

4µ
. (28)

If this negative �s assignment were optimal, the value of �s would solve the problem of
maximizing the above objective function, subject to the constraints that �s 2 [�2µ, 0] and
the values of ⇡A and ⇡B implied by (26) and (27) are feasible in the sense of lying between 0
and 1. The constraint that ⇡B be feasible holds for all �s 2 [�2µ, 0] as does the constraint
that ⇡A be less than 1. However, the constraint that ⇡A � 0 requires that

(2µ�M) (��s) � 2µc.

For there to exist any values of �s in the interval [�2µ, 0] that satisfy this inequality requires
that 2µ > M + c, so we may assume this to be true with no loss of generality.

Summarizing the argument so far, if our negative �s assignment were optimal it would
have to be the case that 2µ > M + c and that the value of �s would solve the problem of
maximizing (28) subject to the constraint that �s 2 [�2µ,�2µc/(2µ�M)]. Now note that
the derivative of (28) with respect to �s is equal to (2µ+ c) /4µ, which is positive. Thus, if
our negative �s assignment were optimal, it must be the case that �s = �2µc/(2µ �M).
With this optimal value of �s, welfare is given by

(M � c)2 � c2

2M
� (2µ+ c) c

2 (2µ�M)
.

This equals
M

2
� c� (2µ+ c) c

2 (2µ�M)
.

This welfare level is strictly smaller than (M � 3c)/2 which is the welfare generated by the
zero peer quality di↵erence assignment.
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ii) M � c  ��s < M + c In this case, Lemma 2 again implies that ⇡A = 1. This situation
is depicted in Figure C5. There are three groups of households because all B households
wish to attend school B. Summing up the payo↵s generated by the three groups, we get

M � c��s

2M

✓
⇡A(

�c��s�M

2
) + (1� ⇡A)(�c)

◆
+
M + c+�s

2M
(
M � c��s

2
)+⇡B(�c)+(1�⇡B)(0).

This simplifies to

M � c��s

2M
⇡A(

c��s�M

2
)� M � c��s

2M
c+

M + c+�s

2M
(
M � c��s

2
)� c⇡B.

This equals

M � c��s

2M
⇡A(

c��s�M

2
) +

M � c+�s

2M
(
M � c��s

2
)� c⇡B,

which equals
(��s)2 � (M � c)2

2M
⇡A +

(M � c)2 ��s2

4M
� c⇡B.

This equals

(1� ⇡A)
(M � c)2 ��s2

4M
� c⇡B.

Since M � c  ��s, this is negative and hence less than the payo↵ from neighborhood
assignment.

iii) M + c  ��s In this case, there are now just two groups of households because all
households wish to attend school B. Given that ⇡A > 0, some A households are assigned
to school B. Feasibility demands that ⇡B = ⇡A, so any equal number of B households are
assigned to school A. Since households are randomly reassigned to schools outside of their
neighborhood, this policy is dominated by neighborhood assignment.

B.6: Proof of Lemma 4

Suppose that {(1, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment such that �M < �c � �s
and ⇡A > 0. By Lemma 4, we know that �s � 0. The fact that �M < �c � �s implies
that M > c + �s � c � �s. The situation is illustrated in Figure C6. There are four
groups of households: A households who prefer school B; A households who prefer school A;
B households who prefer school B; and B households who prefer school A. The feasibility
constraint implies that

✓
M � c��s

2M

◆
⇡A +

M + c+�s

2M
+

✓
M + c��s

2M

◆
⇡B +

✓
M � c+�s

2M

◆
⇡B = 1.

Given that �s � 0, M > c+�s, and ⇡A > 0, this inequality implies that ⇡B < 1. It follows
that ⇡B = 0 by Lemma 2.
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Given all this, the school district’s payo↵ under this assignment is

M + c+�s

2M
(
M � c��s

2
) +

M � c��s

2M

✓
⇡A(

�M � c��s

2
) + (1� ⇡A)(�c)

◆

+
M � c+�s

2M
⇡B(

M + c��s

2
� c).

From the feasibility constraint, we have that

M � c+�s

2M
⇡B = 1�

✓
M � c��s

2M

◆
⇡A � M + c+�s

2M
.

Substituting this into the school district’s payo↵, cancelling and simplifying, the payo↵ can
be written as ✓

M � c

M

◆✓
M � c��s

2

◆
(1� ⇡A). (29)

We now investigate how the peer quality di↵erence �s depends on ⇡A. Next observe that
the fraction of A households attending school A is

✓
M � c��s

2M

◆
⇡A +

M + c+�s

2M

and thus the fraction of B households attending school A is

1�
✓
M � c��s

2M

◆
⇡A � M + c+�s

2M
.

Thus, the peer di↵erence is

�s = 2µ


M + c+�s

M
+

✓
M � c��s

M

◆
⇡A � 1

�
.

This implies that

�s

✓
1� 2µ

M
(1� ⇡A)

◆
= 2µ


M + c

M
+

✓
M � c

M

◆
⇡A � 1

�
,

which implies that
�s (M � 2µ (1� ⇡A)) = 2µ [c+ (M � c) ⇡A] .

Since �s � 0 and the right hand side is positive, this equation implies that M > 2µ (1� ⇡A)
and therefore that

�s =
2µ [c+ (M � c) ⇡A]

M � 2µ (1� ⇡A)
.

Given this, the fact that M > c+�s, implies that

M � c >
2µ [c+ (M � c) ⇡A]

M � 2µ (1� ⇡A)
.
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This requires that M > c+ 2µ.
Now observe that

d�s

d⇡A

=
2µ (M � c) (M � 2µ (1� ⇡A))� (2µ)2 [c+ (M � c) ⇡A]

(M � 2µ (1� ⇡A))
2

=
2µ (M � c) (M � 2µ) + (2µ)2 (M � c) ⇡A � (2µ)2 [c+ (M � c) ⇡A]

(M � 2µ (1� ⇡A))
2

=
2µ (M � c) (M � 2µ)� (2µ)2 c

(M � 2µ (1� ⇡A))
2

=
2µM (M � 2µ)� c2µ (M � 2µ)� (2µ)2 c

(M � 2µ (1� ⇡A))
2

=
2µM (M � 2µ� c)

(M � 2µ (1� ⇡A))
2 > 0

Thus, the peer quality di↵erence is an increasing function of ⇡A.
Now suppose the school district changed the assignment by decreasing ⇡A marginally

and adjusting ⇡B to maintain feasibility. Given that the peer di↵erence would decrease,
it is clear from (29) that this would raise the school district’s payo↵. It follows that
{(1, ⇡A, ⇡B, ⇡B) ,�s} could not be a second best assignment.

B.7: Proof of Lemma 5

Suppose that {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} is a second best assignment such that M > �c + �s
and ⇡B > 0. By Lemma 3, we know that �s � 0. It follows that M > c ��s. By Lemma
2, it follows that ⇡B = 1. In addition, we know by Lemma 4 that either M < c + �s or
that ⇡A = 0. Since when M < c +�s, the value of ⇡A is irrelevant, we can without loss of
generality set it to 0. Consider changing the assignment by reducing ⇡B to zero and raising
⇡A to keep school A full. Let ⇡0

A > ⇡A be the new probability that A households are admitted
and let �s0 > �s be the new peer quality di↵erence.

There are two cases to consider: i) M � c > �s and ii) M � c  �s. In case i), some
A households want to attend school B in the original assignment, and, in case ii), all A
households want to attend school A. We begin with case i).

Panel 1 of Figure C7 illustrates the assignment of household types to schools under the
original policy and Panel 2 illustrates the assignment under the new policy. The latter
assumes that M � c > �s0, so that some A households continue to want to attend school B
in the new assignment.

What happens when we move from the original to the new policy? All the B households
for whom m  c � �s0 no longer attend school A. As illustrated by the Figure, they are
replaced by three groups of households.

1. The first group are B households with m 2 [c � �s0, c � �s]. The probability that
these households attend school A is raised from ⇡B to 1.
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2. The second group are A households with m 2 [�c��s,M ]. The probability that these
households attend school A is raised from ⇡A to ⇡0

A.

3. The third group are A households with m 2 [�c��s0,�c��s]. The probability that
these households attend school A is raised from 0 to ⇡0

A.

Intuitively, it seems like there is a trade-o↵ involved with the new policy. It is better
to have the B households for whom m  c � �s0 all attend school B. It is also better to
have the second group attend school A with higher probability. However, groups 1 and 3 are
further misassigned under the new policy. Nonetheless, it can be shown that the expected
benefits of optimally assigning the B households for whom m  c��s0 exceed the expected
costs associated with distorting groups 1 and 3.

To be more precise, randomly draw a B household for whomm  c��s0 who was assigned
to school A under the original policy. The welfare gain from reassigning this household to
school B is c�m. The expected gain is therefore

c� E(m|m  c��s0) = c� c��s0 �M

2
=

M + c+�s0

2
.

This household’s seat in school A is taken by a household from one of the three groups
identified above.

Suppose that the replacement household is from group 1. Then, if this household has
type m0, the welfare gain (which will be negative) from moving the household to school A is
m0 � c. The expected gain is therefore

E(m0|m0 2 [c��s0, c��s])� c = c� �s

2
� �s0

2
� c = ��s

2
� �s0

2
.

The total expected gain from the reassignment of households is therefore

M + c��s

2
.

This is positive since M � c > �s by hypothesis.
Suppose that the replacement household is from group 2. Then, if this household has

type m0, the welfare gain (which will be negative) from moving the household to school A is
m0 � (�c). The expected gain is therefore

E(m0|m0 2 [�c��s,M ]) + c =
M � c��s

2
+ c =

M + c��s

2
.

The total expected gain from the reallocation of households is therefore

M + c+
�s0 ��s

2
.

This is positive.
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Suppose that the replacement household is from group 3. Then, if this household has
type m0, the welfare gain (which will be negative) from moving the household to school A is
m0 � (�c). The expected gain is therefore

E(m0|m0 2 [�c��s0,�c��s]) + c = �c� �s

2
� �s0

2
+ c = ��s

2
� �s0

2
.

The total expected gain from the reassignment of households is therefore

M + c��s

2
.

This is positive, as argued above.
It follows from this that the new policy increases welfare, which means that the original

assignment could not have been second best.
As noted, this analysis assumes that M � c > �s0, so that some A households continue

to want to attend school B in the new assignment. What happens if M � c  �s0 so that
all A households continue to want to attend school B in the new assignment?

The only di↵erence in the analysis is that the third group are now A households with
m 2 [�M,�c��s]. The expected gain from reassigning one of these households from school
B to school A is therefore

E(m0|m0 2 [�M,�c��s]) + c = �(M + c+�s)

2
+ c = �(M � c+�s)

2
.

The total expected gain from the reassignment of households is therefore

M + c+�s0

2
� (M � c+�s)

2
= c+

�s0 ��s

2
.

This is positive.
Now consider case ii). Recall that this is when M � c  �s, so that all A households

want to attend school A in the original assignment. Since �s0 > �s, all A households want
to attend school A in the new assignment as well. The situation is illustrated in Figure C8.
Panel 1 illustrates the assignment of household types to schools under the original policy and
Panel 2 illustrates the assignment under the new policy.

The di↵erences are twofold: first, the second group consists of the entire group of A house-
holds, so they have m 2 [�M,M ], and, second, the third group disappears. Accordingly, if
the replacement household is from group 2, the expected gain is

E(m0|m0 2 [�M,M ]) + c = 0 + c = c.

The total expected gain from the reassignment of households is therefore

M + c+�s0

2
+ c > 0.

If the replacement household is from group 1, the total expected gain from the reassign-
ment of households continues to be

M + c��s

2
.
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However, in this case, we can no longer use the fact that M � c > �s to conclude that this
is positive. Nonetheless, we can show directly that M + c > �s.

Since �s0 > �s, it is enough to show that M + c > �s0. The fraction of B households
assigned to school A in the new assignment is

M � c+�s0

2M
.

Feasibility implies that the fraction of A households assigned to school A in the new assign-
ment is

1� M � c+�s0

2M
.

Thus,

�s0 = 2µ


1� 2

✓
M � c+�s0

2M

◆�
.

This implies that

�s0 = 2µ


c��s0

M

�
.

It follows that

�s0(1 +
2µ

M
) = 2µ

h c

M

i
) �s0 =

2µc

M + 2µ
.

This means that
M + c > �s0 , (M + c) (M + 2µ) > 2µc,

which is true.
We conclude that the new policy also increases welfare in case ii), which means that the

original assignment could not have been second best.

B.8: Proof of Lemma 6

Let {(⇡A, ⇡A, ⇡B, ⇡B) ,�s} be a second best assignment. If the claim is not true, then both
⇡A and ⇡B must be less than 1. By Lemma 3, we can assume that �s � 0. We can also
assume with no loss of generality that ⇡A = 0 and ⇡B = 0. Lemma 2 tells us that ⇡A = 0
if M > c + �s. But if M  c + �s all A households want to attend school A and ⇡A is
irrelevant, as long as it is less than ⇡A. Accordingly, we can set it equal to 0. Similarly,
Lemma 2 tells us that ⇡B = 0 if M > �c+�s. But if M  �c+�s all B households want
to attend school A and ⇡B is irrelevant as long as it is less than ⇡B.

We can also assume that at least some neighborhood B households would like to attend
school A. If not, then M + �s  c which implies that �M + �s � �c. This in turn
implies that all neighborhood A households would like to attend school A. Since we know
that ⇡B = 0, this implies that ⇡A = 1 to fill school A.

There are two possibilities to consider. The first is that all neighborhood A households
would like to attend school A (M  c+�s). In this case, the school district’s payo↵ is

(1� ⇡A)(�c) +
M +�s� c

2M
⇡B

✓
M + c��s

2
� c

◆
.
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This equals

�(1� ⇡A)c+
⇡B

4M
((M � c)2 ��s2),

which is negative since �s � M � c. This assignment therefore yields a lower payo↵ than
neighborhood assignment and therefore cannot be second best.

The second possibility is that some neighborhood A households would like to attend
school B (M > c+�s). The school district’s payo↵ in this case is

M +�s+ c

2M

✓
⇡A

✓
M � c��s

2

◆
+ (1� ⇡A) (�c)

◆

+
M ��s� c

2M
(�c) +

M +�s� c

2M
⇡B

✓
M + c��s

2
� c

◆
.

This can be written more compactly as

M +�s+ c

2M
⇡A

✓
M + c��s

2

◆
� c+

M +�s� c

2M
⇡B

✓
M � c��s

2

◆
. (30)

We will now write this payo↵ as a function of ⇡B and show that marginally changing ⇡B

can create an increase in the school district’s payo↵. The first task is to develop an expression
for �s as a function of ⇡B. The fraction of B households in school A is

✓
M +�s� c

2M

◆
⇡B,

and the fraction of A households in school A is
✓
M +�s+ c

2M

◆
⇡A.

The feasibility constraint implies that
✓
M +�s+ c

2M

◆
⇡A = 1�

✓
M +�s� c

2M

◆
⇡B. (31)

Substituting this into (30) and rearranging, we can write the payo↵ as

M ��s

2
� c

✓
1

2
+

✓
M +�s� c

2M

◆
⇡B

◆
. (32)

Furthermore, we can write the peer quality di↵erence as:

�s = 2µ

✓
1� 2⇡B

✓
M +�s� c

2M

◆◆
= 2µ

✓
M � ⇡B (M +�s� c)

M

◆
.

Solving for �s yields

�s = 2µ

✓
M � (M � c)⇡B

M + 2µ⇡B

◆
. (33)
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From (33), the derivative of the peer quality di↵erence is

d�s

d⇡B
= �2µ

✓
(M + 2µ⇡B) (M � c)� 2µ(M � c)⇡B + 2µM

(M + 2µ⇡B)
2

◆

= �2µM

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
.

This is negative, which makes sense intuitively.
Now consider the welfare consequences of a marginal change in ⇡B. From (32), the

derivative of the school district’s payo↵ is:

�d�s/d⇡B

2
� c

✓✓
M +�s� c

2M

◆
+

✓
d�s/d⇡B

2M

◆
⇡B

◆

= � 1

2M


c (M +�s� c) +

d�s

d⇡B
(M + c⇡B)

�
.

Substituting in for �s and d�s/d⇡B, we have

c (M +�s� c) +
d�s

d⇡B
(M + c⇡B)

= c

✓
M + 2µ

✓
M � (M � c)⇡B

M + 2µ⇡B

◆
� c

◆
� 2µM

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
(M + c⇡B)

= c

✓
�2µ(M � c)⇡B + 2µM + (M � c) (M + 2µ⇡B)

M + 2µ⇡B

◆
� 2µM

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
(M + c⇡B)

= cM

✓
M � c+ 2µ

M + 2µ⇡B

◆
� 2µM

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
(M + c⇡B)

= M

✓
M � c+ 2µ

M + 2µ⇡B

◆
c� 2µ (M + c⇡B)

M + 2µ⇡B

�

= M

✓
M � c+ 2µ

M + 2µ⇡B

◆
(M + 2µ⇡B) c� 2µ (M + c⇡B)

M + 2µ⇡B

�

= M2

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
[c� 2µ]

Thus, the derivative of the school district’s payo↵ is

�M

2

✓
M � c+ 2µ

(M + 2µ⇡B)
2

◆
(c� 2µ) .

This derivative is either positive or negative if c 6= 2µ. Thus, either a small increase or
decrease in ⇡B will increase welfare. The assignment cannot therefore be second best.

B.9: Proof of Lemma 7

There are two possibilities to consider. The first is that M  c + �s. In this case, all A
households wish to attend school A. Given that ⇡A = 1, all A households are assigned to
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school A. Feasibility therefore requires that ⇡B and hence ⇡B must equal 0. It does not
matter what ⇡A is because no A households wish to apply to school B. Given that school A
consists only of A students, we have that �s = 2µ. Accordingly, for this possibility to arise,
we require that M � c  2µ.

The second possibility is that M > �s + c. In this case, some A households wish to
attend school B and some B households wish to attend school A. Given that ⇡A = 1, the
fraction of A households assigned to school A is

M +�s+ c

2M
.

The fraction of B households who would like to attend school A is

M +�s� c

2M
.

Given that �s > 0, feasibility therefore requires that ⇡B < 1. Lemma 4 implies that ⇡A = 0
and Lemma 2 implies that ⇡B = 0 (since ⇡B < 1). Thus, from the feasibility constraint, we
have that ⇡B satisfies.

M +�s+ c

2M
+ ⇡B

✓
M +�s� c

2M

◆
= 1.

This implies that
M +�s+ c+ ⇡B (M +�s� c) = 2M,

which means that

⇡B =
M ��s� c

M +�s� c
.

In addition, we have that

�s = 2µ

✓
M +�s+ c

2M
� ⇡B

✓
M +�s� c

2M

◆◆

= 2µ

✓
M +�s+ c

2M
� M ��s� c

2M

◆

= 2µ

✓
�s+ c

M

◆
.

Thus

�s =
2µc

M � 2µ
,

and

⇡B =
M � c� 2µc

M�2µ

M � c+ 2µc
M�2µ

.

In order for this possibility, we therefore require that

M >
2µc

M � 2µ
+ c,

which is equivalent to
M > c+ 2µ.
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B.10: Proof of Lemma 8

If M  c+2µ, then by Lemma 7, all A households wish to attend school A and since ⇡A = 1,
they are all assigned to school A. All B households are assigned to school B so that the
assignment corresponds to neighborhood assignment. This generates a payo↵ of 0 for the
school district.

If M > c+ 2µ, then by Lemma 7, some A households wish to attend school B and since
⇡A = 0, they are all assigned to school B. Some B households wish to attend school A and
are assigned to it with probability ⇡B. The school district’s payo↵ is

M +�s+ c

2M

✓
M � c��s

2

◆
+

M ��s� c

2M
(�c)

+⇡B

✓
M � c+�s

2M

◆✓
M + c��s

2
� c

◆
.

This simplifies to

(1 + ⇡B)

✓
M � c+�s

2M

◆
M � c��s

2
.

Lemma 7 tells us that

⇡B =
M � c��s

M � c+�s
,

so this equals
2 (M � c)

M � c+�s

✓
M � c+�s

2M

◆
M � c��s

2
.

This reduces to the expression presented in the statement of Lemma 8.

B.11: Proof of Lemma 9

There are three possibilities to consider. The first is that M + c  �s. In this case, all
households wish to attend school A. Given that B households have priority, this means that
school A consists entirely of B students. School A therefore consists entirely of B students,
so that �s = �2µ. It is therefore not possible that M + c  �s.

The next possibility is that M+c > �s � M�c. In this case, all A households and some
B households wish to attend school A. Given that ⇡B = 1, Lemma 5 implies that ⇡B = 0.
This means that the fraction of B households in school A is

M +�s� c

2M
.

It follows that

⇡A = 1� M +�s� c

2M
=

M ��s+ c

2M
.

It does not matter what ⇡A is, as long as it is less than ⇡A, because no neighborhood A
households wish to apply to school B.
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It follows from all this that

�s = 2µ

✓
M ��s+ c

2M
� M +�s� c

2M

◆

= 2µ

✓
c��s

M

◆
.

Thus

�s =
2µc

M + 2µ

and

⇡A =
M + c� 2µc

M+2µ

2M
.

In order for M � c  �s, we therefore need that

M  c+
2µc

M + 2µ
,

which is equivalent to
M (M + 2µ� c)  4cµ.

The equation
M (M + 2µ� c) = 4cµ,

is a quadratic equation which has solutions

M =
c� 2µ±

p
(2µ� c)2 + 16cµ

2

=
c� 2µ±

p
(2µ+ c)2 + 8cµ

2
.

The positive root is

M =
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
.

The condition that M (M + 2µ� c)  4cµ, therefore amounts to the requirement that

M 
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
.

The third possibility is that M > �s+ c. In this case, some A households wish to attend
school B and some B households wish to attend school A. Given that ⇡B = 1, Lemma 5
implies that ⇡B = 0. This means that the fraction of B households in school A is

M +�s� c

2M
.
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The fraction of A households wishing to attend school A is

M +�s+ c

2M
.

Since �s > 0, feasibility therefore requires that ⇡A < 1. Lemma 2 then implies that ⇡A = 0.
This means that ⇡A satisfies.

⇡A

✓
M +�s+ c

2M

◆
+

M +�s� c

2M
= 1.

This implies that
M +�s� c+ ⇡A (M +�s+ c) = 2M,

which means that

⇡A =
M ��s+ c

M +�s+ c
.

In addition, we have that

�s = 2µ

✓
⇡A

✓
M +�s+ c

2M

◆
� M +�s� c

2M

◆

= 2µ

✓
M ��s+ c

2M
� M +�s� c

2M

◆

= 2µ

✓
c��s

M

◆
.

Thus

�s =
2µc

M + 2µ
.

and

⇡A =
M + c� 2µc

M+2µ

M + c+ 2µc
M+2µ

In order that M > �s+ c, we require that

M >
2µc

M + 2µ
+ c,

which is equivalent to
M(M + 2µ� c) > 4cµ.

As shown above, this requires that

M >
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
.
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B.12: Proof of Lemma 10

In the case in which �s � M � c, the school district’s payo↵ is

⇡A(0) + (1� ⇡A)(�c) +
M + c��s

2M
(0) +

M � c+�s

2M

✓
M + c��s

2
� c

◆

We have that

1� ⇡A =
M � c+�s

2M
,

so this simplifies to
M � c+�s

2M

✓
M � c��s

2
� c

◆
.

As shown in Lemma 9, this case arises when

M 
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
,

and in this case

�s =
2µc

M + 2µ
.

In the case in which �s < M � c, the school district’s payo↵ is

M ��s� c

2M
(�c) +

M +�s+ c

2M

✓
⇡A(

M � c��s

2
) + (1� ⇡A)(�c)

◆
+

M + c��s

2M
(0) +

M � c+�s

2M

✓
M + c��s

2
� c

◆
.

This equals

�c+
M +�s+ c

2M
⇡A(

M + c��s

2
) +

M � c+�s

2M

✓
M � c��s

2

◆
.

We have that

⇡A

✓
M +�s+ c

2M

◆
= 1� M +�s� c

2M
=

M ��s+ c

2M
,

so the school district’s payo↵ is

�c+
M ��s+ c

2M
(
M + c��s

2
) +

M � c+�s

2M

✓
M � c��s

2

◆
.

This reduces to

�c+
M2 + c2 ��s(M + c)

2M
.

As shown in Lemma 10, this case arises when

M >
c� 2µ+

p
(2µ+ c)2 + 8cµ

2
,

and in this case

�s =
2µc

M + 2µ
.
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B13: Proof of Lemma 11

We begin with part i) and thus assume that c > 2µ. Suppose first thatM <
c�2µ+

p
(2µ+c)2+8cµ

2 .
It is straightforward to verify that

c� 2µ+
p

(2µ+ c)2 + 8cµ

2
< c+ 2µ.

Thus, from (19) and (22), we have that

WA = 0,

and that

WB =

✓
M +�sB � c

2M

◆✓
M ��sB � c

2M
� c

◆
.

But, sinceM is less than
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2, we know from the proof of Lemma

9 that M ��sB � c < 0. This implies that WB < 0, which means that A priority yields a
higher payo↵.

Next suppose that M �
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2. There are two cases to con-

sider. The first is when M > c+2µ. In this case, it follows from (19) and (22) that A priority
yields a higher payo↵ than B priority, when

M2 + c2 � (M + c)�sB
2M

<
M2 + c2 � (M � c)�sA

2M
.

This is equivalent to

(M � c)�sA < (M + c)�sB
(M � c) 2µc

M � 2µ
<

(M + c) 2µc

M + 2µ
(M � c) (M + 2µ) < (M + c) (M � 2µ)

M2 + 2µM � cM � cµ2 < M2 � 2µM + cM � cµ2

2µ < c.

Thus, since 2µ < c, A priority yields a higher payo↵ than B priority.

The second case is when
c�2µ+

p
(2µ+c)2+8cµ

2  M  c + 2µ. In this case, it follows from
(19) and (22) that A priority yields a higher payo↵ than B priority, when

M2 + c2 � (M + c)�sB
2M

< c

M2 + c2 � 2Mc < (M + c)�sB

M2 + c2 � 2Mc <
(M + c) 2µc

M + 2µ

M3 + c2M � 2M2c+M22µ+ c22µ� 4Mcµ < M2µc+ 2µc2

M3 + c2M +M22µ < 6Mµc+ 2M2c

M2 + c2 +M2µ < 6µc+ 2Mc

M2 +M2 (µ� c) + c (c� 6µ) < 0
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To convert this into a a cleaner condition on M , we need to solve the quadratic equation

M2 +M2 (µ� c)� c (6µ� c) = 0.

This has solution

M =
2c� 2µ±

q
(2µ� 2c)2 + 4c (6µ� c)

2
.

The relevant root is the positive one

2c� 2µ+
q
(2µ� 2c)2 + 4c (6µ� c)

2

=
2c� 2µ+

p
4µ2 + 4c2 � 8µc+ 24cµ� 4c2

2

=
2c� 2µ+

p
4µ2 + 16cµ

2

= c� µ+
p

µ2 + 4cµ.

Thus, we conclude that, in the case
c�2µ+

p
(2µ+c)2+8cµ

2  M  c + 2µ, A priority dominates
B priority when

M < c� µ+
p

µ2 + 4cµ.

Observe that

c� µ+
p

µ2 + 4cµ > c+ 2µ

()
p
µ2 + 4cµ > 3µ

() µ2 + 4cµ > 9µ2

() c > 2µ

Thus, when c > 2µ, there is no range in which B priority dominates A priority.
We now turn to part ii) of the Lemma and thus assume that c < 2µ. Then, as just argued,

we have that
c� µ+

p
µ2 + 4cµ < c+ 2µ.

Moreover, we have that

c� µ+
p

µ2 + 4cµ >
c� 2µ+

p
(2µ+ c)2 + 8cµ

2

To see this note that this inequality is equivalent to

2c� 2µ+ 2
p

µ2 + 4cµ > c� 2µ+
p
(2µ+ c)2 + 8cµ

c+
p

4µ2 + 16cµ >
p
(2µ+ c)2 + 8cµ

The latter is true if c < 2µ.
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Thus, suppose that M < c� µ+
p
µ2 + 4cµ. Then, M < c+ 2µ and it follows from (19)

that WA equals 0. From (22), we have that

WB =

8
<

:

�
M+�sB�c

2M

� �
M��sB�c

2M � c
�
if M <

c�2µ+
p

(2µ+c)2+8cµ

2

(M�c)2�(M+c)�sB
2M if M >

c�2µ+
p

(2µ+c)2+8cµ

2

.

We already know that WB < 0 when M <
⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2. Moreover, when

the reverse inequality holds, we know that

(M � c)2 � (M + c)�sB
2M

=
M2 + c2 � (M + c)�sB

2M
� c < 0

when M < c� µ+
p

µ2 + 4cµ. Thus, A priority dominates B priority in this range.

Now suppose that M > c�µ+
p
µ2 + 4cµ. Then M >

⇣
c� 2µ+

p
(2µ+ c)2 + 8cµ

⌘
/2,

so that from (22), we have that

WB =
M2 + c2 � (M + c)�sB

2M
� c.

We know that WB > 0, so WB exceeds WA if M < c + 2µ. If M > c + 2µ, it follows from
(19) that WB exceeds WA when

M2 + c2 � (M + c)�sB
2M

>
M2 + c2 � (M � c)�sA

2M
.

This is equivalent to

(M � c)�sA > (M + c)�sB
(M � c) 2µc

M � 2µ
>

(M + c) 2µc

M + 2µ
(M � c) (M + 2µ) > (M + c) (M � 2µ)

M2 + 2µM � cM � cµ2 > M2 � 2µM + cM � cµ2

4µM > 2cM

2µ > c.

Thus, since 2µ > c, B priority yields a higher payo↵ than A priority. ⌅

32



Appendix C. Figures for Appendix B

Figure C1

Assignment of neighborhood A households

�M �c 0 M

B A with Pr= M
M+c

Assignment of neighborhood B households

�M 0 c M

AB with Pr= M
M+c

Note: Panel (a) describes how households in neighborhood A are allocated to schools as a function of their

match value m. For example, households with m 2 (�c,M) are assigned to school A with probability
M

M+c ,

while households with m 2 (�M,�c) are assigned to school B with certainty. Panel (b) provides the

analogous information for households in neighborhood B.

Figure C2

Assignment of neighborhood A households

�M �c �c�4s 0 M

B A with Pr=⇡A

Assignment of neighborhood B households

�M 0 c c�4s M

AB with Pr=⇡B

Note: See notes to Figure C1 and text for details.

33



Figure C3

Assignment of neighborhood A households

�M �c 0 �c�4s M

B A with Pr=⇡A

Assignment of neighborhood B households

�M 0 c M

A with Pr=⇡B

Note: See notes to Figure C1 and text for details.

Figure C4

Assignment of neighborhood A households

�M �c 0 �c�4s M

A with Pr=⇡A A

Assignment of neighborhood B households

�M 0 c c�4s M

AA with Pr=⇡B

Note: See notes to Figure C1 and text for details.
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Figure C5

Assignment of neighborhood A households

�M �c 0 �c�4s M

A with Pr=⇡A A

Assignment of neighborhood B households

�M 0 c M

A with Pr=⇡B

Note: See notes to Figure C1 and text for details.

Figure C6

Assignment of neighborhood A households

�M �c�4s �c 0 M

A with Pr=⇡A A

Assignment of neighborhood B households

�M 0 c�4s c M

A with Pr=⇡B A with Pr=⇡B

Note: See notes to Figure C1 and text for details.
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Figure C7

Panel 1: Original policy

Assignment of neighborhood A households

�M �c�4s �c 0 M

B A with Pr=⇡A

Assignment of neighborhood B households

�M 0 c�4s c M

A with Pr=⇡B A

Panel 2: New policy

Assignment of neighborhood A households

�M �c�4s0 �c 0 M

B A with Pr=⇡0
A

Assignment of neighborhood B households

�M 0 c�4s0 c M

AB

Note: See notes to Figure C1 and text for details.
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Figure C8

Panel 1: Original policy

Assignment of neighborhood A households

�M �c 0 M

A with Pr=⇡A

Assignment of neighborhood B households

�M 0 c�4s c M

A with Pr=⇡B A

Panel 2: New policy

Assignment of neighborhood A households

�M �c 0 M

A with Pr=⇡0
A

Assignment of neighborhood B households

�M 0 c�4s0 c M

B A

Note: See notes to Figure C1 and text for details.
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